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Abstract

Scholars frequently use covariate balance tests to test the validity of natural experiments and related designs.
Unfortunately, when measured covariates are unrelated to potential outcomes, balance is uninformative
about key identification conditions. We show that balance tests can then lead to erroneous conclusions. To
build stronger tests, researchers should identify covariates that are jointly predictive of potential outcomes;
formally measure and report covariate prognosis; and prioritize the most individually informative variables
in tests. Building on prior research on “prognostic scores," we develop bootstrap balance tests that upweight
covariates associated with the outcome. We adapt this approach for regression-discontinuity designs and
use simulations to compare weighting methods based on linear regression and more flexible methods,
including machine learning. The results show how prognosis weighting can avoid both false negatives
and false positives. To illustrate key points, we study empirical examples from a sample of published studies,
including an important debate over close elections.

Keywords: covariate balance tests, placebo outcomes, natural experiments, as-if random, regression discontinuity designs,
continuity of potential outcomes, weighting methods

1. Introduction

Methodologists urge researchers to test observable implications of assumptions that aid causal inference.
In natural experiments and related designs, researchers often report covariate balance tests. The logic
appears straightforward: if a coin flip had determined treatment assignment, pre-treatment covariates
or “placebo outcomes" would have the same distribution, in expectation, in treatment and control
groups (Eggers, Tufién, and Dafoe 2023, Caughey, Dafoe, and Seawright 2017). A statistically
insignificant association between treatment and covariates is consistent with random assignment—an
important advantage, if true, for making inferences about causation—while a significant association
may suggest a flaw in the design.

Unfortunately, these widely used tests may shed no light on key identification conditions. Re-
searchers testing the validity of an alleged natural experiment would like to know whether a treatment
is assigned independently of potential outcomes—a condition sometimes called "as-if" random.! In
many studies, however, none of the measured covariates used in the balance tests are prognostic,
that is, associated with potential outcomes. In others, some covariates are prognostic but others
are not. As we show in this article, balance tests based on irrelevant covariates unrelated to po-
tential outcomes cannot tell us whether as-if random is plausibly met. A similar point applies to

1. Potential outcomes are the outcomes that would be realized under counterfactual assignment to different treatments
(Neyman, Dabrowska, and Speed 1923, Rubin 1974). Freedman (2009) and Dunning (2012) discuss as-if random.
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regression-discontinuity designs, in which analysts often seek to test the continuity of potential
outcomes at a threshold determining treatment assignment, rather than as-if random. The continuity
of non-prognostic covariates is uninformative about the continuity of potential outcomes themselves.

Using a sample of experiments, natural experiments, and regression-discontinuity designs pub-
lished in top political science journals, we demonstrate three features—and, we argue, problems—of
existing balance tests. (1) Covariate prognosis is rarely or never measured. (2) The overall prognosis
of the covariates used in balance tests varies across studies—and is often very weak. (3) Within studies,
the prognosis of individual covariates also varies and is also often weak.

These problems undermine the ability of standard balance tests to assess identification conditions.
In typical practice, researchers report lengthy covariate balance tables without considering which
variables are actually predictive of outcomes. However, sometimes imbalances occur on irrelevant
covariates unrelated to potential outcomes. Other times, it is the prognostic covariates that are
imbalanced. Because prognosis is not measured or incorporated formally into tests, the varied
informativeness of different covariates is not considered, and it is difficult to assess how meaningful
are rejections for any individual covariate. Moreover, because researchers often present tests for
different covariates separately, standard procedures also lead to multiple testing problems as well
as indeterminacy: there is no clear rule for rejecting an overall null hypothesis like as-if random.
Finally, because researchers do not report the joint prognosis of covariates, readers and reviewers
cannot readily assess the overall power of the tests to falsify identification conditions.

We make several contributions in this article to addressing these common problems. First,
we show why covariate prognosis is important for balance tests. We demonstrate that tests using
irrelevant, non-prognostic covariates can lead researchers falsely to reject as-if random when it is
true or to fail to reject when it is false.

Second, we show that researchers can increase the power and specificity of their tests by measuring
the most jointly prognostic covariates possible—and then prioritizing the most informative covariates,
among those they measure. Here we build on and extend research in statistics and epidemiology on
"prognostic scores," which have been little used in the social sciences; see especially Hansen (2008)
and Stuart, Lee, and Leacy (2013).2 Thus, we offer the following concrete advice for how researchers
using balance tests can address problems (1)-(3) highlighted above:

(1) Measure and report prognosis in balance tests. We propose measures of covariate prognosis
that help researchers and readers assess the informativeness of balance tests. Although potential
outcomes are partially unobservable (Holland 1986), it is possible to assess, for instance, how well
covariates predict potential outcomes under control using data from a control group sample. Such
diagnostic measures are essential because prognosis is an empirical question. For example, while
the pre-treatment values of outcome variables tend to be related to potential outcomes under
control (Imbens and Rubin 2015: 483-4), such lagged outcomes may or may not be available to
researchers; and, as we show, in some applications they are not in fact prognostic.

(2) Maximize overall covariate informativeness. Our results show that as the set of covariates
used in balance tests become more prognostic, the tests become more powerful and specific. Thus,
researchers should endeavor to collect data on the most jointly prognostic covariates possible.
Theoretical and substantive knowledge can guide the identification of covariates that are likely
associated with potential outcomes in a given context. Where feasible, researchers should include
the lagged dependent variable as a covariate. Formalizing the reporting of measures of prognosis
as part of the publication process, per (1), can aid assessment of informativeness and heighten
researchers’ incentives to gather data on the most predictive covariates possible.

(3) Prioritize prognostic variables in the tests. Finally, we construct balance tests that give greater
weight—among a set of measured covariates—to the individual variables most associated with

2. See also Rubin and Thomas 2000, Leacy and Stuart (2014), and Wainstein 2022.
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potential outcomes. By combining information on prognosis across covariates into a single test
statistic, these prognosis-weighted tests confront problems of indeterminacy and multiple testing
in covariate-by-covariate tests and can increase the power and specificity of tests.

For (3), the key test statistic is the difference in the average fitted, covariate-adjusted potential
outcomes under control across treatment and control groups. As in Hansen (2008) and Stuart,
Lee, and Leacy (2013), the researcher thus uses a technique to learn predicted potential outcomes
in the control group, obtain predictions for potential outcomes for units in the treatment group,
and compare averages of the two fitted values. In our baseline test of as-if random, the statistic is
equivalent to a weighted difference of covariate means across treatment and control groups; the
weights are coefficients from a standardized linear regression of control group outcomes on covariates
and measure prognosis. The test thus combines the inputs of standard balance tables—differences of
means of individual covariates—into a prognosis-weighted statistic with a single associated p-value.
This omnibus approach addresses indeterminacy and multiple testing problems, while upweighting
informative covariates and downweighting irrelevant covariates unrelated to the outcome.

We also extend prognosis weighting in several ways. First, we adapt the technique for regression-
discontinuity designs. To test the continuity of average potential outcomes at the threshold deter-
mining treatment assignment, researchers may compare differences of prognosis-weighted intercepts
from regressions above and below the threshold. This approach similarly prioritizes the most infor-
mative covariates and bases assessment on a single prognosis-weighted statistic.

Second, we expand the fitted value approach to flexible regressions and nonlinear machine
learning methods, which to our knowledge existing work on prognostic scores has not done. We
use simulations to assess how prognosis weighting can improve power and specificity, relative to
standard unweighted tests, and to compare the different fitting procedures.

Third, for hypothesis testing, we provide a bootstrap that accounts for the statistical dependence
of covariate control group means and the estimated prognosis weights. We also discuss how to
leverage equivalence testing with prognosis weighting. We implement all statistical routines in our
forthcoming R package pwtest.’

Our results show that prognosis-weighted tests can achieve substantial gains in power as well
as specificity, relative to standard unweighted tests. The key advantage is that downweighting
irrelevant noise variables unrelated to potential outcomes can limit both false positives and false
negatives—because conclusions are then based on the most informative covariates. Linear prognosis-
weighted tests with expanded polynomial bases or covariate interactions tend to perform best in our
simulations, in terms of simultaneously achieving the greatest power and specificity.

Finally, we discuss many empirical examples of problems (1)-(3) in applied research. Both the
extent of imbalance and, especially, the degree of covariate prognosis vary across the studies in
our sample. We report p-values for prognosis-weighted tests of as-if random and continuity and
show graphically how our prognosis-weighted tests project out irrelevant covariates. This helps
demonstrate how prognosis weighting can address the problems we highlight. The techniques extend
naturally beyond natural experiments and discontinuities to randomized experiments with attrition,
imperfect implementation, or other issues that may be detectable with tests based on covariate
imbalance, once analysts have outcome data available.

Our survey of applications demonstrates that by properly prioritizing informative covariates,
prognostic-weighted tests base conclusions on the variables most predictive of outcomes. In one set
of studies, the relatively predictive individual covariates are imbalanced (e.g. Samii 2013, Blattman
2009, or Thomas 2018); here, prognosis weighting can lead rejections of as-if random, whereas
unweighted tests do not. In a second set (e.g. Novaes 2018, Kim 2019, and Boas and Hidalgo 2011),
there is imbalance only on irrelevant noise covariates, so adjusting for prognosis may increase our

3. Package putest can be found on https:/github.com/[ANONYMIZED]/pwtest. Installation instructions and syntax are
in Online Appendix Section 9).
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confidence in the validity of the natural experiment. In a final set of studies (e.g.,Fouirnaies and
Hall 2014), there is a mix of observed balances and imbalances on prognostic and non-prognostic
variables, and prognosis weighting helps sort out the relative importance of the different covariates.

We also show the importance of covariate prognosis for testing the randomness of close elections,
a topic of important debate (Caughey and Sekhon 2011, Eggers et al. 2015, De la Cuesta and Imai
2016, Hartman 2021). Existing tests exhibit the general problems (1)-(3) we identify. Using data from
the U.S. House, we demonstrate how prognosis-weighted tests synthesize and extend contrasting
previous results. Most importantly, we show that covariate prognosis in cross-national tests of the
randomness of close elections is very weak: for example, lagged party incumbency has on average
no predictive value for incumbency outcomes in cross-national data. Balance tests using this single
covariate, as in Eggers et al. (2015), therefore have little power to falsify as-if random or continuity.
In particular, they are prone to false negatives. This case study therefore not only suggests that the
methodological debate on the randomness of close elections in general is not settled but also highlights
the importance of empirically measuring prognosis—rather than assuming it—and accounting for it
analytically in identification tests.

Methodologically, by incorporating prognosis-weighting into omnibus tests of identification
conditions, we contribute to previous research on covariate balance testing. Imai, King, and Stuart
(2008) emphasize the problem that failing to reject a null hypothesis is not the same as accepting
it: researchers may fail to reject simply because their study is small and underpowered. Our work
adds a further dimension to this “balance test fallacy," because we show that even a large, apparently
well-powered test will not validly test key identification conditions if covariates are not prognostic.
By basing tests on a single summary test statistic, we also provide a new way to address multiple
testing concerns (De la Cuesta and Imai 2016) and complement valuable articles on omnibus covariate
balance tests (Hansen and Bowers 2008; Caughey, Dafoe, and Seawright 2017; Gagnon-Bartsch and
Shem-Tov 2019), which do not however consider covariate prognosis.

Our most important contribution, however, is practical. Social science researchers deploying
balance tests in natural experiments and related designs do not currently measure or account for
the informativeness of covariates. We show how (1) measuring and (2) maximizing joint prognosis,
then (3) prioritizing informative covariates that are predictive of outcomes while de-prioritizing
irrelevant ones, can improve the usefulness of covariate balance tests. Prognosis-weighted tests
offer an improvement on current practice in applied research—which ignores the issue of prognosis
entirely—and can lead to more credible conclusions about whether identifying conditions are met.

In the next section, we use our sample of papers from top political science journals to illustrate
the three key problems we highlight. We then discuss in section 3 why prognosis matters for testing
identification conditions. In section 4, we describe bootstrap prognosis-weighted tests of as-if random
and adapt the approach to test continuity of potential outcomes in regression-discontinuity designs.
We also discuss simulation evidence on the tests’ power and specificity. In section 5, we turn to practical
issues, discussing many examples that show the gains from prognosis weighting and developing
the case study of close elections. Our conclusions in section 6 expand on our recommendations for
practice. Technical details and formal arguments are in the Online Appendix.

2. The problem of weak covariate prognosis: a survey of reported balance tests
To motivate our focus, we study a random sample of 150 articles that use randomized experiments,

natural experiments, and RD designs and that were published in three top political science journals
(the APSR, the AJPS, and the JOP), stratifying by journal, over the time period 2000-2019.> Overall,

4. Related research in statistics and epidemiology recommends upweighting tests for “important” hypotheses—those most
plausibly false—in p-value combinations; see e.g. Fisher (1935), Holm (1979), Benjamini and Hochberg (1997), Kost and
McDermott (2002), Westfall (2014), and Genovese, Roeder, and Wasserman (2006). Our approach gives specific content to
which hypotheses are most likely to be false in balance tests by upweighting covariates related to potential outcomes.

5. For code used in the sampling, see OMITTED.
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52 percent of articles present balance tests.
The survey suggests three features—and, we will argue, problems—of standard balance tests.

2.1 Prognosis is rarely measured
Covariate prognosis is rarely considered systematically. In fact, we found no examples of efforts to
measure the prognosis of the covariates used in balance tests.

This is a critical omission because different covariates vary in their ability to predict potential
outcomes. As we discuss next, (a) the set of covariates used in a given study may or may not be jointly
prognostic; and (b) within a given study, different individual covariates may have different degrees
of association with the outcome variable.

Moreover, it is not obvious a priori whether a given set of covariates is prognostic. For example,
methodologists sometimes recommend using the pre-treatment value of the dependent variable as a
covariate (Imbens and Rubin 2015: 483-4, Eggers, Tufién, and Dafoe 2023, Caughey, Dafoe, and
Seawright 2017). This may be because it can be highly prognostic of potential outcomes under
control. Yet this also might not hold, for example, due to heterogenous temporal trends or other
factors. In our case study of close-election designs later, we show that lagged party incumbency has
almost no predictive value for incumbency outcomes in a cross-national data set. Prognosis is thus
an empirical question, and it requires formal diagnosis.

Reporting measures of the association between covariates and outcomes can give readers an
indicator of the informativeness of balance tests. As we will show, prognosis powerfully affects the
ability to use covariate balance to test key identification conditions meaningfully (sections 3 and 4).
However, such measures are essentially never reported in applied work.

2.2 Joint covariate prognosis varies across studies—and is often weak
The joint prognosis of covariates used in balance tests in fact varies substantially across different
studies—and is often quite low.

The horizontal axis of Figure 1 plots the R? from the multiple regression of control group
outcomes on all available covariates, for a sub-sample of the studies (“Prognosis R>").® As we discuss
later, such goodness-of-fit measures provide one helpful tool for assessing prognosis. The vertical
axis plots the multiple R? from the regression of a treatment assignment indicator on all available
covariates (“Imbalance R?").

Figure 1 suggests several insights. First, we find relatively little covariate imbalance in these
studies overall. Most cluster along the bottom portion of the plot, with a low Imbalance R? (less
than 0.1). This likely reflects our sampling strategy: studies with substantial covariate imbalance are
unlikely to be published as natural experiments or discontinuity designs. Sampling a fuller range of
observational studies would presumably populate the top part of the figure.

Second and more concerningly, however, covariates are not predictive of potential outcomes in
many studies. Some studies located towards the right of the horizontal axis use covariates associated
with potential outcomes. Yet, many studies cluster close to the vertical axis—where the prognosis
R2 is zero. We note that in the full sample of 150 studies, only 18 percent of balance tests used the
pre-treatment value of the dependent variable as a covariate.

Thus, many balance tests use noise covariates that are only weakly related to potential outcomes.
This includes several studies with good observed balance. Arguments we will develop in section 3
and 4 suggest that heuristically, there are four kinds of cases in Figure 1:

1. In the lower-left quadrant, we risk a form of Type I error: we may fail to reject as-if random due
to the observed balance of noise covariates unrelated to outcomes. Yet potential outcomes are
themselves related to treatment assignment.

6. We omitted randomized experiments and stratified on natural experiment versus discontinuity and on the presence of a
lagged dependent variable. We excluded some studies due to lack of replication data (Online Appendix Section 6.1).
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2. In the upper-left quadrant, we may instead be prone to spurious rejection of as-if random—because
there is imbalance on covariates unrelated to potential outcomes.

3. In the lower-right quadrant, we find cases with high prognosis but low imbalance: here, the
claim of as-if random may be most persuasive.

4. Finally, in the upper-right quadrant, rejection may be most persuasive of a failure of as-if
random—because imbalanced covariates are as a whole prognostic of potential outcomes.

For 3 and 4, however, we note that covariates may be associated with potential outcomes as a whole,
leading to a high prognosis RZ; yet balance or imbalance could occur on a non-prognostic subset of
covariates.

This implies that tests should be based on the most individually prognostic covariates in the set,
as in the prognosis-weighted procedures we present in section 4.
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The figure plots a sample of natural experiments and regression-discontinuity (RD) designs drawn from all those published
in the American Political Science Review, American Journal of Political Science, and Journal of Politics, 2000-2019; Caughey
and Sekhon (2011) is added. Prognosis R> comes from a regression of potential outcomes under control on all available
covariates (control group only). Imbalance R? comes from a regression of treatment assignment on all available covariates.
Two studies we discuss in detail in Section 5 are bolded. See Online Appendix Section 1 for further information.

Figure 1. Imbalance vs. Prognosis In Balance Testing (Sample of Natural Experiments and RD Designs)

2.3 Individual covariate prognosis varies within studies—and is also often weak
Finally, within studies, different covariates also vary in their informativeness about outcomes.

In Figure 2, we plot (a) the standardized difference of means across treatment and control groups
for each covariate in each study in Figure 1 (vertical axis) against (b) that covariate’s individual
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prognosis, i.e., the standardized regression coefficient from the prognosis regression (horizontal axis).
The black dots indicate differences of means that are statistically significant in a r-test, while gray
dots indicate insignificant differences.”

As Figure 2 shows, some individual covariates are strongly predictive of potential outcomes—
while for many others, the prognosis coefficient is near zero. Furthermore, as with joint prognosis
(Figure 1), the relationship between individual prognosis and the treatment-control imbalances varies.
In some studies, irrelevant covariates unrelated to potential outcomes are imbalanced; other times, it
is the prognostic covariates that are significantly imbalanced.

Unfortunately, as with joint prognosis, we find no formal measurement in these studies of which
particular covariates are actually predictive of outcomes. Absent a plot like Figure 2 or other measures
of the prognosis of individual covariates, it is difficult to know which ones are informative.

This situation appears typical in the literature. Researchers often present tests for numerous
individual covariates: the majority of the studies in our sample that present balance tests (56 percent)
report only covariate-by-covariate tests. Such tests can result, however, in indeterminacy (Kost and
McDermott 2002) as well as problems of multiple statistical comparisons (Benjamini and Hochberg
1995, De la Cuesta and Imai 2016). Rules of thumb—such as that only 1 out of 20 differences should
be significant at the 0.05 level when treatment is randomized—do not apply when covariates are
correlated and thus tests are dependent, as they almost always are in practice (Caughey, Dafoe, and
Seawright 2017). Results of disparate covariate-by-covariate tests fail to lead to a clear decisions rule
for rejecting an overall null hypothesis like as-if random.

Most worrisome, different covariates differ in their informativeness about potential outcomes—
yet because prognosis is undiagnosed, it is difficult to know which of the separate covariate-by-
covariate tests should be treated as most dispositive. This variation in individual informativeness
affects interpretation of test results, as we will show. Even studies that assess the joint imbalance
of all covariates using omnibus or global test statistics—for example, by reporting the p-value of
the F-statistic from the (unweighted) regression of a treatment indicator on all covariates—do not
account for the varied informativeness of individual covariates.® All covariates are thus treated equally
in balance tests—but in truth, some are more informative than others.

2.4 Summary of survey: limitations of standard balance tests
Our survey shows that covariate prognosis varies both within and across published balance tests. Yet,
in none of the studies we examined is prognosis measured. Nor is it incorporated formally into tests.
What are the implications for our conclusions about identification conditions? How should we
think about tests with low imbalance but also low prognosis, as in the bottom-left quadrant of Figure
1? What inferences can we draw from those located in the figure’s other quadrants? And how should
we adapt covariate balance tests to account for the unequal informativeness of different covariates?
We develop theory and simulations to address these questions in sections 3 and 4, then we return
to further discussion of empirical examples in section 5.

7. For consistency, we use the same test for each study. The effective sample size can differ across variables due to
covariate-specific missing data. See details in Online Appendix Section 1.

8. By “omnibus" and "global," we mean a test statistic based on some combination of the covariates that returns a single
p-value, rather than different p-values for different covariates (Caughey, Dafoe, and Seawright (2017)). See Hansen and
Bowers (2008) on drawbacks of the F-test.
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Covariate prognosis

For each of our sampled studies in Figure 1, we plot for each covariate the standardized difference of means across
treatment and control (vertical axis) against the covariate’s standardized multiple regression coefficient, from the prognosis
regression (horizontal axis). The red triangles indicate the overall prognosis and imbalance R?s. We indicate in black the
covariates where the p-value < 0.05 from a two-tailed t-test of covariate values across treatment and control, suggesting
covariate imbalance. In discontinuity designs, we use the authors’ chosen bandwidths to define the study group for the
tests (see Online Appendix Section 1.1.1 for details).

Figure 2. The prognosis and imbalance of individual covariates varies
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3. Are potential outcomes balanced? Why prognosis matters
Researchers using experiments, natural experiments, and discontinuity designs often wish to test key
identification conditions.

In valid natural experiments, the following condition must hold:

Assumption 1 (As-if Random Assignment) Treatment is assigned independently of potential outcomes.

As-if random ensures, for example, that sicker patients do not go systematically to the treatment group
in a drug trial studying health outcomes, or that those more prone to vote do not disproportionately
receive a vote-mobilizing intervention.? If as-if random holds, the true ATE is estimable using simple,
transparent methods (Freedman 1999).

This assumption can be the “Achilles Heel" of natural experiments, however (Dunning 2008). In
a true randomized experiment, a chance protocol under the control of a researcher (Fisher 1935)
ensures that treatment is independent of potential outcomes, as well as any fixed covariates—though
even in experiments, issues like attrition or failed implementation can compromise as-if random. In
natural experiments, by contrast, as-if random is held to be an implication of a process, not under the
control of the researcher, that is alleged to produce a haphazard allocation that does not depend on
potential outcomes.

Unfortunately, Assumption 1 cannot be directly verified due to the “fundamental problem of
causal inference" (Holland 1986): we do observe treatment potential outcomes for those assigned to
the control group, and vice versa. We thus cannot use the realized distribution of potential outcomes
to test as-if random.

3.1 What standard balance tests do

Researchers therefore seek to test Assumption 1 using information about the realized distribution of
observed covariates across treatment and control groups. The difficulty is that these covariates may or
may not be related to potential outcomes—and thus standard balance tests therefore may or may not
effectively test as-if random.

Suppose that the space of possible covariates contains "signal" covariates, which contain all
information about potential outcomes, and “noise" covariates, which contain none (compare Liu
and Ruan 2020). Signal covariates and potential outcomes are dependent, while noise covariates are
independent of potential outcomes.!?

The logic of standard balance tests appears to rest on the following claim:

Claim 1 Treatment assignment is independent of covariates if and only if treatment assignment is
independent of potential outcomes.

Thus, a failed balance test suggests a failure of as-if random, and vice versa.

The claim is false, however. As we show formally in Online Appendix Section 2, two kinds of
counterexamples are relevant:

Counterexample to Claim 1: False positives. Suppose treatment is assigned independently of
potential outcomes, so as-if random holds. However, observed covariates are merely noise, and
Nature has adversarially chosen to assign treatment so that it depends on the noise covariates. Then
treatment assignment depends on covariates—even though treatment is assigned independently of
potential outcomes. The “if" direction of the claim thus does not follow.

9. Assumption 1 is also sometimes called (strong) ignorability.
10. See Online Appendix Section 2 for a formal treatment.
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For example, in an observational study of the efficacy of a new drug, men might tend to select
into the treatment group. Yet gender may be unrelated to health status or responsiveness to the
treatment. If we have only data on gender, we may wrongly reject as-if random based on the
covariate imbalance, even though potential outcomes themselves may be independent of treatment.

A researcher who believed Claim 1 might thus perform a balance test, observe imbalance between
treatment and control groups on some subset of covariates, and conclude that treatment was not
randomly assigned. However, this is a false positive if the imbalanced covariates are unrelated to
potential outcomes: their imbalance does not constitute evidence that as-if random fails.

Conversely—and perhaps most importantly, as we might worry most about false claims to
a natural experiment—balance on a spurious covariate does not imply that treatment is assigned
independently of potential outcomes, as the next counterexample shows.

Counterexample to Claim 1: False negatives. Assume now that as-if random fails but treatment
is assigned independently of the noise covariates. Independence of observed noise covariates and
treatment does not therefore imply that treatment is assigned independently of potential outcomes.
The “only if" direction of Claim 1 does not follow.

For instance, sicker patients might select into the treatment group. As-if random may thus fail.
Health after an intervention may be closely related to prior health—yet we may fail to measure this
signal covariate. In contrast, men may be as likely to select into treatment as women, leading to
expected balance on gender. Yet, if gender is not related to potential outcomes or responsiveness
to treatment, its observed balance cannot readily validate as-if random. If we base a balance test on
gender, we may thus falsely fail to reject as-if random.

In sum, covariates differ in their informativeness about potential outcomes. If we only measure
noise covariates—those unrelated to potential outcomes—then finding balance or imbalance on those
covariates does not allow us to test as-if random assignment.

3.2 The power of prognosis

The discussion thus far suggests we should consider the informativeness of covariates when con-
structing balance tests.

There are at least two reasons that prognosis of covariates matters for testing—and also thus why
covariates with differing degrees of prognosis should not be “treated equal.”

First, as mentioned, the most direct test of as-if random would assess balance of potential outcomes
across the treatment and control groups (Imbens and Rubin 2015, Chapter 21). This test is impossible:
once treatment has occurred, we do not observe potential outcomes under control in a treatment
group or potential outcomes under treatment in a control group (Holland 1986).

Yet, a covariate strongly associated with potential outcomes may give us substantial information
about this realized balance. Indeed, as we discuss next, if the covariates at our disposal happened to
contain all information about subjects’ potential outcomes, then we could use the observed balance
of covariates to validly test the independence of treatment assignment and potential outcomes.

Second and relatedly, if subjects self-select into treatment groups, as in many observational studies,
then (contra as-if random) the intervention they receive may depend on the outcomes they would
experience in each group (Heckman 1979, Angrist and Pischke 2009). Agents may have unobserved
prognostic information that researchers lack, e.g. about their expected gains from treatment that
may lead them select into treatment. The informativeness of balance tests can therefore be especially
limited if covariates are not predictive of potential outcomes.

In contrast, as we argue next, measuring and prioritizing prognostic covariates in tests is most
likely to detect such selection into treatment on the basis of potential outcomes.
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3.2.1 Aconceptual motivation: minimally sufficient covariates

As a conceptual motivation for this argument, suppose first that observed covariates that are "minimally
sufficient"—essentially, that contain all and only the possibly observable information about potential
outcomes (Dawid 1979, Pear] 1988, VanderWeele and Shpitser 2011, 2013, Wang and Wang 2020).
In this case, as we show in the appendix, treatment assignment depends on the covariates if and
only if they depend on potential outcomes (Online Appendix Section 3.1, Theorem A.1). Then,
we may validly reject as-if random based on the non-independence of treatment assignment and
covariates—as in standard balance tests.

This idea is useful because it underscores the importance of choosing jointly informative covariates—
and then prioritizing the most informative subset for tests. Sufficiency only guarantees the "if"
direction of Theorem A.1. Thus, it controls false negatives: if covariates are sufficient, then when
treatment is not assigned independently of potential outcomes, we should expect a well-powered
balance test to fail. For the "only if" direction, we need minimum sufficiency—i.e., the and only part
of its definition. This controls false positives: if covariates are minimally sufficient, a failed balance test
implies a failure of as-if random. This is a key motivation for the prognosis-weighted tests we discuss
in Section 4. By projecting potential outcomes onto covariates before running tests, we effectively
discard uninformative covariates—as in the creation of a minimally sufficient from a merely sufhcient
covariate set.

In applications, unfortunately, covariates usually cannot be expected to contain such complete
information about the values of potential outcomes. Moreover, sufficiency is difficult or impossible
to validate. To be sure, a version of this condition could occur in some settings. For example, the
pre-treatment value of the response variable may sometimes equal the post-treatment value in the
absence of an intervention. Then this covariate’s correlation with potential outcomes under control is
1, which also implies sufficiency. Yet, even with a lagged dependent variable, temporal trends could
imply differences in values of the outcome variable in the pre- and post-treatment periods, absent an
intervention. These trends could be heterogeneous for different units, which implies a correlation
less than 1. The direct practical implications of the minimal sufficiency theorem are thus limited.

3.2.2 The importance of prognosis

The more prognostic covariates are, however, the closer they may get to approximating the ideal
situation of complete informativeness, i.e., sufficiency. The logic suggests that the power and
specificity of tests will improve as covariates become more predictive of potential outcomes.

Moreover, even when a set of measured covariates is not sufficient, we may be able to improve
the performance of tests by prioritizing the individual covariates that are most closely associated with
potential outcomes. We discuss simulation evidence that supports this claim in subsection 4.2.

This argument parallels in some ways standard arguments about the role of prognosis in achieving
control over confounding variables in observational studies (VanderWeele and Shpitser 2011, 2013):
the more predictive of outcomes the measured covariates are, the less likely it is that unobserved
factors produce violations of as-if random. The difference is that here we are focusing on covariate
characteristics that allow us effectively to test as-if random, rather than control for violations of
it. Testing and estimation can be complementary tasks. However, as we suggested in section 3.1,
with balance testing we should be attentive to both false negatives and false positives: we may fail to
reject as-if random because spurious covariates are balanced, but we may also falsely reject it because
irrelevant covariates are imbalanced.

The challenge is therefore to collect covariate data that allow us to test identification conditions
convincingly. Unfortunately, the predictiveness of covariates for outcomes has been ignored in
applications of balance testing in experiments, natural experiments, and discontinuity designs. As we
emphasized in Section 2, researchers do not typically report measures of covariate prognosis, nor do
they discuss efforts to maximize the informativeness of covariates used in balance tests. Thus, it is
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usually difficult to assess the extent to which these pathologies of standard balance tests apply.

In sum, we argue that researchers should attempt to gather the most informative set of covariates
possible, and then prioritize the most prognostic ones in their tests. The more prognostic are
covariates, the more information they give us about the likely balance of potential outcomes, and
the more useful are covariate balance tests. Measures such as the prognosis R? (Figures 1-2) can be
viewed as a continuous operationalization of informativeness. Such measures can help researchers
assess the adequacy of information about potential outcomes contained in a set of measured covariates.
We return to this point in connection with our simulations (section 4.2), where we assess how error
rates in tests vary as a function of levels of prognosis observed in the empirical studies in Figures 1
and 2.

4. Prognosis-weighted covariate balance tests

Suppose researchers successfully gather data on jointly prognostic covariates, as recommended in the
previous section. How should they combine the information from different covariates to test key
identification conditions?

Prognosis-weighted tests provide a useful approach that prioritizes the covariates that are most
informative about potential outcomes. Hansen (2008) proposed balancing on “prognostic scores" in
observational studies, and some subsequent literature has explored the performance of prognostic-
score balancing using simulations (see especially Stuart, Lee, and Leacy 2013).

We extend these methods to develop covariate balance tests appropriate for assessing as-if random
(Assumption 1) as well as continuity of potential outcomes in RD designs (see subsection 4.1.1). The
key test statistic in all tests is a difference in the average covariate-adjusted potential outcome under
control—that is, a difference of fitted values—across treatment and control groups. We define this
statistic formally in Online Appendix, Section 4.1.

In a baseline test of as-if random based on linear regression, this statistic is equivalent to a weighted
combination of differences of covariate means, where the weights are coefficients from the prognosis
regression—i.e., the standardized multivariate regression of outcomes on covariates in the control
group. Thus, the test takes the inputs of covariate balance tests—covariate differences of means across
treatment and control—and combines them into a single test statistic. This derivation is in Online
Appendix, Section 4.2.

This approach therefore downweights irrelevant covariates and prioritizes informative variables.
The goal can also be viewed as constructing a test set as close to minimally sufficient as possible, via a
projection of potential outcomes onto covariates before running tests.

4.1 Extensions
We propose three types of additional extensions.

4.1.1 Prognosis-weighted tests of continuity in regression-discontinuity designs
First, we extend the fitted value approach to allow for prognosis-weighted tests of continuity in
regression-discontinuity (RD) designs. Here, the key identification condition is:

Assumption 2 (Continuity of Potential Outcomes—RD Designs) Potential outcomes regression functions
are continuous at the threshold determining treatment assignment.

Continuity implies that the limits of these functions are the same approaching from above and below
the threshold. This motivates the standard approach of testing for the equality of intercepts of two
regressions, one above and the other below the threshold value of the running variable.

In applications, however, researchers typically test for the continuity not of potential outcomes
but of covariates. Thus, they regress each pre-treatment covariate separately on the forcing variable,
above and below the RD threshold, and conduct a test for equality of the intercepts at the threshold.
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Unfortunately, such tests may not be informative about the continuity of potential outcomes
themselves. Just as with tests of as-if random, researchers are subject to false negatives and false
positives due to irrelevant covariates (section 3.2). Covariates may be continuous at the threshold and
yet potential outcomes may not be; or vice versa. The standard approach similarly raises problems of
indeterminacy and multiple testing (De la Cuesta and Imai 2016).

Fortunately, we can readily form a prognosis-weighted test statistic that is appropriate for testing
Assumption 2. Following our previous approach of using only the prognostic part of the covariates, we
first regress the outcome variable on covariates on the control group side of the RD threshold. Then,
we fit regressions—not of covariates, as in standard practice, but of fitted potential outcomes—on the
running variable, on each side of the threshold.

The test statistic is then a prognosis-weighted difference of intercepts from regressions above
and below the threshold determining treatment assignment. Conceptually, it is as if we ran separate
regressions of each covariate on the running variable above and below the assignment threshold, as in
standard covariate-by-covariate tests—but then combined the intercepts from the separate regressions
using prognosis weighting. As with tests of as-if random, the prognosis-weighted difference of
intercepts allows a test of continuity based on the covariates that are most informative about potential
outcomes. We present the tests formally in Online Appendix Section 5.

We encourage prognosis-weighted assessment of continuity as the primary test of identification
for RD designs. Continuity is the sine qua non for valid analysis: if there are discontinuous jumps
in the potential outcome regression functions at the point of discontinuity, it will be difficult to
distinguish this discontinuity from true treatment effects (Calonico, Cattaneo, and Titiunik 2014;
De la Cuesta and Imai 2016).

We note, however, that reliance on continuity for identification can also raise substantial estimation
challenges, which can undercut the reliability of conclusions. As Stommes, Aronow, and Sivje (2023,
3) rightly note, “the statistical challenges under the RD design are better compared with those we
typically face in other types of observational studies.” This is in part because reliance on continuity
requires estimation of intercepts in regions where data may be sparse, limiting power; and it can
also require complicated bias corrections and adjustments to standard errors (Cattaneo, Idrobo, and
Titiunik 2020).

Conversely, in some applications, it may also be the case that the stronger condition of as-if
random (Assumption 1) holds in a bandwidth around the assignment threshold. As-if random implies
the weaker assumption of continuity. Essentially, as-if random implies that the slopes of the regression
functions relating potential outcomes to the running covariate are flat (Dunning 2012, 128-33 and
158-60; Cattaneo, Frandsen, and Titiunik 2015; Sekhon and Titiunik 2017). In this case, effect
analysis may be substantially simpler and conclusions may be more reliable. Hypothesis testing
can also more readily rely on randomization inference, a key advantage (Cattaneo, Frandsen, and
Titiunik 2015). We thus encourage researchers to report secondary prognosis-weighted tests of as-if
random, where applicable. We return to this point in section 5, where we discuss RD studies in our
sample where as-if random plausibly holds.

4.1.2  Prognosis weighting based on flexible regressions and non-linear methods

Second, we explore a range of prognosis-weighted tests based on flexible regressions and nonlinear
methods, including machine-learning techniques.

The fitted-value approach leads naturally to these extensions, since different methods can be
used to fit covariate-adjusted potential outcomes in the control group and then extrapolate predicted
values to the treatment group. The motivation is that by allowing better prediction of potential
outcomes—when, for instance, outcomes are nonlinearly related to covariates—flexible methods
may improve the power or specificity of tests. The performance of tests based on machine learning
and other flexible methods appears not to have been assessed in the literature on prognostic scores,
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however (as noted by Stuart, Lee, and Leacy 2013 and Leacy and Stuart 2014).

We implement these methods—including linear regression with expanded polynomial bases and
covariate interactions, regularization with lasso, and machine learning methods including random
forests and gradient boosted trees—as options in our R software (Online Appendix Section 4.5). We
use simulations to compare the performance of the different methods, as discussed in subsection 4.2.

4.1.3 Bootstrapped hypothesis tests and equivalence testing

Finally, we develop statistical hypothesis tests appropriate for these varied forms of prognosis weight-
ing. We discuss a bootstrapping approach that allows naturally for the statistical dependence of the
prognosis weights and control group means and that can be readily adapted for clustered or blocked
designs, as well as linear and flexible non-linear fitting procedures (Online Appendix Section 4.4).

This bootstrap can be used in connection with the different approaches to fitting covariate-
adjusted potential outcomes, including the flexible regressions and machine learning methods.
In addition, researchers may use prognosis-weighted equivalence tests, as a replacement for or
complement to either traditional hypothesis testing, to assess identification conditions. We discuss
the value and limitations of equivalence tests in Online Appendix Section 6.

Overall, then, across a range of different kinds of designs, prognosis weighting allows covariate
balance tests in which rejections of null hypotheses stem from differences of covariate distributions
across the treatment and control groups—as in standard approaches—but in which the differences
are weighted by measures of prognosis. Since tests are based on a single prognosis-weighted test
statistic and thus one p-value, the approach also avoids the problems of indeterminacy and multiple
comparisons that beset standard covariate-by-covariate tests.

4.2 Performance of prognosis-weighted tests: evidence from simulations
Under what conditions does prognosis weighting address the problems we raised in sections 2 and 3?
The extent to which prognosis weighting boosts the power and specificity of tests may vary across
different data sets and data-generating processes, especially when covariates are not sufficient. This
makes the tests” performance well-suited for investigation via simulations.

We conducted two types of simulations to assess the performance of prognosis-weighted tests.
Due to space limitations, we present full results in Online Appendix Section 7.1

4.2.1 Prognosis-weighted vs. unweighted tests

In one set of simulations, we compare the performance of unweighted to prognosis-weighted tests,
while varying the informativeness of observed covariates about potential outcomes (Online Appendix
Sections 7.1-7.4).

Specifically, we compare the prognosis-weighted test that uses linear regression to fit the potential
outcomes to two unweighted tests: (i) the sum of standardized covariate differences of means (call
this statistic 5y, see Online Appendix Section 4.2.1) and (ii) Hotelling’s T2, another common
multivariate test statistic. The latter differ from covariate-by-covariate tests in that they are based on
omnibus statistics but are similar to standard approaches in that they treat all covariates “equally.”

These simulations allow us to study how joint prognosis affects the power and specificity of
covariate balance tests and how prioritizing informative covariates, through prognosis weighting,
affects performance. Thus, we study rejection rates of the tests when as-if random holds and when
it is false, varying covariate prognosis (Online Appendix Sections 7.1-7.4). When as-if random is
false, the rejection rate measures statistical power of the test; when it is true, the rate measures false
positives (or Type I error, inversely related to specificity). We consider settings in which observed

11. Simulations were run on the High Performance Computing (Savio) server at the University of California, Berkeley.
The process outlined in Steps 1-6 in Appendix Section 7.1 runs in parallel on 24 CPU and takes on average 40 hours.
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covariates are sufficient and those in which they are not. In the latter case, we vary prognosis so that
covariates are completely uninformative about potential outcomes or only partially so.

Results: Prognosis—weighted tests avoid bothfalse negatives and false positives

The results from the first set of simulations illustrate that by projecting out irrelevant covariates,
prognosis weighting can reduce both false negatives and false positives. In contrast, unweighted
multivariate tests that do not use information on covariate prognosis sacrifice power and/or specificity.
The extent to which prognosis weighting improves performance depends on the prognosis of the
covariates: as it increases, prognosis-weighted tests become both more powerful and more specific.

Three further conclusions are important to note. First, when covariates are sufficient but not
minimally so, unweighted tests tend to reject as-if random when it is true or fail to reject it when
it is false, due to the balance or imbalance of spurious covariates (Online Appendix Figure A1 and
Table A3). In contrast, prognosis-weighted tests control Type I error at standard levels, failing to
reject as-if random when it is true; yet it also increasingly rejects as-if random when it is false as the
prognosis of imbalanced covariates grows. Thus, compared to unweighted tests, prognosis weighting
balances power and specificity: it better detects true failures of as-if random while simultaneously
limiting spurious rejections (Online Appendix Figure A2).

Second and by contrast, when covariates are insufficient and fully non-prognostic—that is,
composed only of noise—weighted and unweighted tests alike are prone to substantial error. When
the spurious covariates are balanced in expectation, but as-if random is false, the false negative rate
for both kinds of tests approaches 1 (top-left panel of Online Appendix Figure A3).

Third and finally, however, even when covariates are not sufhicient, the power of the weighted—
but not the unweighted—tests grows as prognosis increases (right panels of Online Appendix
Figure A3 and Table A4). The performance of the prognosis-weighted tests improves as the joint
informativeness of measured covariates grows because it prioritizes those individual covariates that
are most informative.

Thus, the simulations illustrate the usefulness of prognosis weighting but also offer an important
caveat, consistent with discussion in section 3: the quality of balance tests—including prognosis-
weighted ones—depends on the overall joint prognosis of measured covariates. Even when covariates
are not jointly sufficient, however, the prognosis-weighted test achieves power on the order of
70-80% in these simulations when the prognosis R? lies between 0.1 and 0.2 (see Online Appendix
Figures A3 and A4 and Table A4). Indeed, prognosis-weighted tests can attain 80% power at low
levels of expected imbalance with prognosis R as low as 0.125 (Figure A4). Since these thresholds
certainly depend on the data-generating structure, to be conservative, researchers might require a
prognosis R? of 0.2 to defend their tests as meaningfully prognostic.

The results therefore underscore that diagnosing and reporting covariate prognosis is critical—and
so is incorporating information about the relative prognosis of different covariates into tests.

4.2.2 Varieties of prognosis weighting: linear vs. machine learning methods

In a second set of simulations, we compare different types of prognosis-weighted tests. Here, the
prognosis weights are fit using both linear and flexible non-linear methods, under different degrees
and types of covariate prognosis and imbalance. We modify the data-generating processes so that
potential outcomes are nonlinear functions of the covariates (Online Appendix Section 7.5).

We first consider simulations with polynomials of the covariates in the process for potential
outcomes (Online Appendix subsection 7.5.1). Next, we consider simulations with interaction terms
in the outcome process (Online Appendix subsection 7.5.2). Finally, we evaluate prognosis-weighting
tests with two ‘difficult,” highly nonlinear relationships between covariates and potential outcomes
(Online Appendix subsection 7.5.3). Thus, we use (a) a “tree” specification that creates regime-
dependent relationships based on the sign of an interaction term. This specification allows assessment
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of the methods’ performance when the functional form switches discretely based on the interaction
term, creating fundamentally different covariate-outcome relationships across regions of the space.
We also assess results using (b) a “sine” specification incorporates high-frequency nonlinearities. This
formulation challenges linear prognosis models with oscillatory components that standard polynomial
approximations may not, a priori, seem to capture well.

In these final simulations, we compare the performance of (1) unweighted tests; (2) prognosis-
weighted tests based on simple linear regressions; (3) prognosis-weighted tests based on regressions
with expanded polynomial bases or interactions; and (4) prognosis-weighted tests based on two
machine learning methods—(i) tuned random forests and (ii) tuned gradient boosted trees—as well as
lasso with expanded bases (e.g. polynomial and covariate interactions). We also assess the performance
of the best-fitting method (the one that produces the best fit to control potential outcomes) that is
automatically selected by the software in each run of the simulations. We manipulate the target R? of
the prognosis regressions to assess how test performance varies as covariate informativeness changes.

Results: (Saturated) linear models perform well

The results of the second set of simulations suggest several useful insights and conclusions.

1. Prognosis-weighted based on "saturated" linear regressions—i.e., those with expanded polynomial
bases or covariate interactions—can sometimes offer improvements in power over simple linear
methods, as can flexible nonlinear methods (Online Appendix Figures A5 and A7-A10).

2. In many simulations, however, the differences are minor. The extent of the improvement depends
not just on non-linearities in the relationship between covariates and potential outcomes but
also on the nature of imbalances. When “main" terms are balanced in expectation but nonlinear
(e.g. polynomial or interaction) terms are imbalanced, methods that allow nonlinear fits can
offer improved power. Yet, when there is also expected imbalance on main terms, the expected
performance of the tests is often indistinguishable (Online Appendix Figures A7-A10).

3. In these simulations, automatic selection of the method that produces the best fit of potential
outcomes given covariates in the control group need not lead to the most powerful test. Even with
the complex, ‘difficult’ data-generating processes, the expanded linear model with polynomial
bases and covariate interactions has the greatest power (Online Appendix Figures A11-A12).

Overall, the best performer is often the test based on the expanded linear model with polynomials
and interactions: it controls Type I error at similar levels as other prognosis-weighted tests when
as-if random is true, but it rejects as-if random with the highest probability when it is false. We
therefore recommend simple tests with weights based on linear regression, particular with expanded
bases where possible, due to their i) estimation stability and sometimes greater power; and ii) the
ready interpretability of weights in terms of the relative prognosis of the different covariates.

Our simulations also draw attention to the importance of patterns of linear versus non-linear
prognostic imbalances, which to our knowledge has not received attention in work on covariate
balance testing. Standard approaches typically test only for main differences (e.g. differences of
means), though some researchers do consider differences in distributions using e.g. K-S tests. Analysts
should consider the substantive domain under consideration and be attentive to the possibility of
non-linear imbalances on prognostic variables. We return to further recommendations in section 6.

5. Prognosis weighting in practice

We now return to the three empirical problems identified in the introduction, using our sample of
applied studies: (1) covariate prognosis is virtually never measured; (2) joint prognosis of covariates
varies across studies and is often low; and (3) prognosis of individual covariates varies within studies
and is also often low.
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Our theory and simulations discussed in sections 3 and 4 suggest why these features of the applied
literature are problems: low-prognosis tests are prone to false negatives and false positives. Without
measuring or accounting for prognosis, it is impossible to assess whether conclusions are based on
signal or noise covariates.

We therefore now apply prognosis weighting to the balance tests in our sample. By basing
conclusions on the most prognostic variables, the weighted tests can help to mitigate problem (3),
and they lead naturally to diagnostic measures that address problem (1). However, the results of
balance tests in studies with low joint covariate prognosis, as in (2), are unreliable.

Table 1 reports prognosis-weighted of identification conditions for the full sample of studies in
Figures 1 and 2, as well as, for comparison, unweighted tests. The unweighted tests are based on the
dumw statistic defined in subsection 4.2.1 and Online Appendix Section 4.2.1. Studies are ordered
by the Prognosis R2 in the final column, from highest to lowest. As already suggested by Figure
1, there is substantial variation in the joint informativeness of covariates used in balance tests: the
Prognosis R2 ranges from 0.633 to essentially 0.000 across the studies in our sample.

For studies not based on regression-discontinuity designs, we present only tests of as-if random.
For studies that are based on discontinuities, Table 1 reports tests for continuity of potential outcomes,
as well as secondary tests of as-if random. As we argued in section 4.1.1, continuity is the sine
qua non for the analysis of RD designs. However, it is also sometimes useful to test the stronger
condition of as-if random: where this holds, analysts may be able to limit the estimation difhculties
due to sparse data near the assignment threshold that are discussed by, e.g., Stommes, Aronow, and
Sivje (2023) or to use randomization inference procedures, such as those described by Cattaneo,
Frandsen, and Titiunik (2015). In the discontinuity studies in our sample, a prognosis-weighted
test in fact rejects neither continuity nor as-if random in 7 out of the 12 RD studies: consistent
with as-if random being the stronger assumption, when as-if random is not rejected, neither is
continuity. However, the PW test rejects as-if random but not continuity in 4 studies, while it
rejects both as-if random and continuity in one study. As we discuss in the Online Appendix, in the
studies where the prognosis-weighted test does not reject as-if random, potential outcomes appear
visually as flat functions of the running covariate (i.e., the derivative of the regression function with
respect to the running covariate is indistinguishable from zero). The prognosis-weighted test of as-if
random can indeed be viewed as a test of the shape of the potential outcomes regression function in
a neighborhood of the RD threshold.

Prognosis weighting often reverses the conclusions from unweighted tests (Table 1). While we
fail to reject as-if random (or continuity, for RD studies) using any test in six of these 14 these papers,
in other papers a prognosis-weighted test rejects where an unweighted test does not, or vice versa.

Why do these divergences occur? Inspection of Figure 2 and comparison to Table 1 suggests
that there are three sets of cases. First, when the weighted test rejects but not the unweighted test,
non-prognostic covariates are statistically balanced—but prognostic covariates are imbalanced.

Second, when the opposite occurs—prognostic covariates are statistically balanced while imbal-
ance occurs on noise covariates—unweighted tests reject while PW tests do not.

Finally, a third set of studies in Figure 2 shows a mix of balance and imbalance on prognostic
variables. In this case, prognosis weighting sorts through the mix to allow an overall conclusion.

In sum, the prognosis-weighted tests appropriately prioritize the most informative covariates.

5.1 Three sets of cases where prognosis weighting helps

We now discuss in more detail examples of these three empirical patterns.12

12. Details on the analyses for each study are in Online Appendix Section 1.
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Table 1. Summary of p-values from prognosis-weighted and unweighted tests for the sample of studies in Figure 1. For
RD studies, we include p-values from tests of continuity of potential outcomes. Studies are ordered by the value of the
prognosis R?, from highest to lowest.

Study Test duw p-value  dpy p-value  Prognosis R?

Hall (2015) continuity 0.580 0.653 0.633
as-if random 0.166 0.988

Kim (2019) continuity 0.592 0.826 0.541
as-if random 0.000 0.792

Caughey and Sekhon (2011)  continuity 0.994 0.812 0.487
as-if random 0.470 0.004

Novaes (2018) continuity 0.644 0.090 0.441
as-if random 0.676 0.676

Hidalgo and Nichter (2016) continuity 0.308 0.323 0.366
as-if random 0.540 0.548

Samii (2013) continuity 0.168 0.298 0.244
as-if random 0.480 0.030

Blattman (2019) as-if random 0.162 0.042 0.206

Fouirnaies and Hall (2014) continuity 0.002 0.658 0.200
as-if random 0.034 0.274

Thomas (2018) continuity 0.000 0.000 0.184
as-if random 0.000 0.016

Boas and Hidalgo (2011) continuity 0.564 0.434 0.151
as-if random 0.122 0.312

Healy and Malhotra (2013) as-if random 0.216 0.538 0.137

Klasnja (2015) continuity 0.860 0.685 0.072
as-if random 0.328 0.000

Holbein and Hillygus (2016)  continuity 0.854 0.273 0.023
as-if random 0.310 0.012

Eggers et al (2015) continuity 0.218 1.000 0.000
as-if random 0.464 0.666

5.1.1 Prognostic imbalance

In one set of studies, we find balance on noise covariates but greater imbalance on prognostic
covariates (see Figure 2, Table 1, and Online Appendix Section 1). In such contexts, an analysis that
does not consider covariate prognosis may support the existence of a natural experiment or valid
discontinuity design. Yet, prognosis weighting may suggest greater cause for concern.

Consider the excellent study by Samii (2013), who assesses the consequences for ethnic tolerance
of serving in an integrated military in Burundi in the aftermath of a brutal, ethnically charged
civil war. Using for identification a discontinuity design based on a military retirement age, the
paper shows that serving in an ethnically integrated military decreased prejudicial behavior, though
not necessarily the salience of ethnicity. To assess identification conditions, Samii (2013, 569-70)
uses balance tests with pre-treatment covariates that have "strong potential to confound were they
to exhibit discontinuities near the cutoff." These include noncommissioned officer status; years in
the military; years of prewar education; wartime death rates per military unit; and family wartime
mortality. Informally, Samii describes why each of these fre treatment covariate might be linked to
ethnic tolerance (the outcome variable). The prognosis R* is .194 (Table 1), indicating that measured
covariates are jointly fairly predictive of the outcome. However, as with other standard balance tests
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in the literature, there is no formal measurement of the informativeness of individual covariates.

In fact, it turns out that prognosis varies substantially across the individual covariates included in
the balance tests. In the standardized prognosis regression of prejudice on covariates, the coeficient
is just 0.007 on years of prewar education, while the standardized coefhicient on years in the military
is -0.468 (see our Figure 2 and Online Appendix Section 1). Per Figure 2, the latter, prognostic
covariate is also the only one for which as-if random would be rejected in a covariate-by-covariate
difference of means test (p-value 0.013). And because the most prognostic covariate is imbalanced,
while less prognostic covariates are statistically balanced, the prognostic-weighted omnibus test
rejects as-if random (p-value 0.018), while an unweighted test does not (Table 1).

Thomas (2018) and Blattman (2009) provide similar examples of imbalance on prognostic variables
(Figure 2). As shown in Table 1, prognosis-weighted tests therefore call into question as-if random
(p-value 0.016 in Thomas; 0.042 in Blattman) and continuity (p-value 0.000 in Thomas). In the case
of Blattman’s study of the effects of child soldiering in Uganda, the author spotted the imbalance
on the prognostic age variable (see Figure 2) and controlled for this single covariate in treatment
effect regressions. Blattman (2009, 232) argued that in the Ugandan Lord’s Resistance Army,
“abduction parties were under instruction to release only young children and older adults" but other
indiscriminately kidnapped "adolescent and young adult males," leading to the imbalance on age
across abducted (treatment group) and non-abducted (control group) youths.

Formal diagnosis of prognosis—and graphical assessments like those in Figure 2—can generally
aid the identification of such prognostic, imbalanced covariates. In some studies, like Blattman’s,
qualitative understanding of the treatment assignment process may support an argument that treat-
ment assignment is independent of potential outcomes—but only conditional on an imbalanced,
prognostic covariate. In other studies, identification of such covariates may call into question the
assumption of a valid natural experiment or discontinuity design.

5.1.2  Prognostic balance

In another set of studies, we find the opposite situation: noise covariates are imbalanced, but there is
statistical balance on prognostic variables. In these cases, a naive unweighted test may imply a failed
design, but a prognosis-weighted test instead supports key identification conditions.

Novaes (2018), for example, uses a close-election design to assess whether barely winning an
election causes mayors (who often play the role of partisan brokers) to switch parties at lower rates
than near losers.!> The author conducts balance tests on 27 covariates (see our Figure 2 and Online
Appendix Section 1). Our analysis suggests statistical imbalance on several of these variables, but
these covariates are all essentially non-prognostic. In contrast, more informative variables are tightly
balanced. The p-values from prognosis-weighted tests therefore do not reject as-if random or
continuity.

Kim (2019) is another example of a study with substantial imbalance on non-prognostic variables.
The author exploits a discontinuity design based on a population threshold that assigns direct
democracy to municipalities in Sweden to study effects on the political inclusion of newly enfranchised
women. The author tests for balance on nine covariates. Four are negligibly prognostic, with
standardized coefficients in the regression of women’s turnout (the primary outcome) on covariates
that are near zero; two of these noise variables are significantly imbalanced. By contrast, lagged
turnout is highly prognostic, with a coefficient of 0.575 yet also statistical balanced (p-value 0.244).
Finally, three variables—the pre-treatment tax base, share of agriculture in the economy, and land
area—are both moderately prognostic and imbalanced (with respective prognosis coefhcients and
p-values of 0.115 and 0.000; -0.224 and 0.041; and -0.157 and 0.003). By combining information on
imbalance and prognosis across covariates, an informativeness-weighted test helps to sort out these

13. Novaes (2018) also studies whether this effect was influenced by a sudden court decision that restricted elected politicians
from switching parties during their term.
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contrasting signals: an unweighted test of as-if random rejects (p-value < 0.000) while prognostic-
weighted tests reject neither as-if random nor continuity. This is also a highly prognostic set of
covariates overall (prognosis R? of 0.541, per Table 1).

Boas and Hidalgo (2011) provide a final example in which there are imbalances in some placebo
tests—but only with non-prognostic covariates. In this study, the authors study the effect of political
incumbency on control of the media, using a close-elections design.14 To assess as—if random and
continuity of potential outcomes, Boas and Hidalgo (2011, 876) present covariate-by-covariate tests
for 18 variables. Difference-of-means tests reject the null for three (our Figure 2): an indicator for
the state of Minas Gerais ("uf_mg"), the vote share of president Lula of the Worker’s Party in 1998,
and the log of the electorate size ("votes"). However, these three variables have small standardized
prognosis coefficients (-0.045, -0.001, and -0.038, respectively) in the regression of politician’s control
of local media on covariates (see Online Appendix Section 1). Other covariates, including the most
prognostic covariates such as latitude (prognosis coefficient -0.167) or time since application for a
radio license (prognosis coefficient 0.323), are balanced. Boas and Hidalgo (2011: 875) argue that the
pattern of imbalance across the 18 covariates "is approximately what one would expect if incumbency
status had been randomly assigned." However, rules of thumb for the number of covariates that
should be imbalanced in expectation do not readily apply, given dependence across covariates.

Pooling information across the different covariates to construct a single omnibus, prognosis-
weighted test allows a more conclusive test than covariate-by-covariate comparisons. Thus, with the
Boas and Hidalgo (2011) data, prognosis-weighted tests reject neither as-if random nor continuity
(our Table 1). The tests properly discount imbalances on non-prognostic variables.

5.1.3 Mixed prognostic balance and imbalance

In a final set of studies, there is imbalance on some prognostic and noise covariates, and balance on
others. In these cases, the prognosis-weighted test is crucial for sorting out the relative weight of the
balance and imbalance among prognostic covariates and for providing a single test statistic that can
summarize the evidence for or against the identification conditions.

Fouirnaies and Hall (2014) provide one example. Per Figure 2, a large number of both prognostic
and noise variables are statistically balanced, as indicated by the gray shading. However, several
prognostic covariates are also statistically imbalanced. While unweighted tests of as-if random and
continuity reject the nulls, prognosis-weighted tests do not.

In sum, in standard covariate-by-covariate tests, analysis of different variables would lead to
different conclusions about identification conditions. And there is no way in typical practice to
assess how meaningful is each test, because measures of prognosis are not provided. Prognosis-
weighted tests instead combine information across covariates and properly base conclusions on the
most informative of the variables.

5.2 Case study: are close elections really random?
Finally, consider a prominent controversy over the randomness of close elections. Contributions to
this recent debate illustrate all three of the problems (1)-(3) with covariate balance tests that we have
highlighted. Our reanalysis of these data synthesizes previous results but also leads to new substantive
conclusions and suggests the need for additional study and data collection.

In a very close election, which party winds up with a slightly greater vote share at time ¢ may
seem quite plausibly as-if random (Lee 2008, Lee and Lemieux 2010)." If true, this facilitates study
of the impact of party incumbency on electoral or other outcomes at time ¢ + 1.

14. City council candidates who barely won an election had more than twice the probability of approval of a community
radio license, compared to those who barely lost.

15. Later, we discuss another possible identification condition for close-election designs—the continuity of average potential
outcomes at the threshold determining treatment assignhment.
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Yet, in an important study, Caughey and Sekhon (2011) critically appraise this assumption for
close U.S. House elections (1942-2008). Presenting a series of covariate differences-of-means tests
in a small neighborhood around a 0% difference in Democrat-Republican vote share, they show
statistically significant imbalances in past incumbency, as well as the winning party’s past vote share,
campaign spending, and measures of candidate quality. This appears to undermine as-if random.

In an excellent subsequent study, Eggers et al. (2015) extend the Caughey and Sekhon study to a
broad range of majoritarian elections around the world. Observing that lagged party incumbency
seems to be the major driver of imbalances in Caughey and Sekhon’s data, they compare close
election winners and losers only on this covariates. They find balance on past incumbency in every
other setting they examine. Thus, they conclude that the observed imbalance in U.S. House elections
may reflect special features of that context or is simply be due to chance.!6

5.2.1 The three problems of balance testing in close elections
Consider now, however, how the three problems of covariate balance testing we have discussed
impact the conclusions that can be drawn from this controversy.

(1) First, covariate prognosis is not measured or reported.

Caughey and Sekhon (2011) and Eggers et al. (2015) emphasize the importance of lagged party
incumbency, and variables correlated with it, as key covariates for balance tests. However, they
do not empirically assess each covariate’s prognosis. Nor do they report measures of the overall
associations of covariates used in balance tests with outcomes.

This is important because, as we show next, covariate prognosis in fact varies substantially both
within and across these studies—and not always in the way one might expect a priori. This variation
has important implications for interpreting the strength of the balance tests.

(2) Second, individual covariates are not equally informative—yet this variation is not incorporated
in tests.

As shown in Figure 2, both the (a) imbalance and (b) prognosis of individual covariates varies
substantially in the Caughey and Sekhon (2011) data on the U.S. House. Several covariates are
imbalanced, but many are not. And while covariates as a whole appear jointly informative, with a
prognosis R? of 0.49 (Figure 1), many individual covariates are not prognostic—with standardized
regression coefhicients near zero.

Unfortunately, there is no formal procedure that takes into account the unequal informativeness
of different covariates.!” And covariate-by-covariate tests offer no ready way to reconcile the
contrasting results: some tests reject and others do not, so one cannot readily infer the overall strength
of the evidence for or against as-if random.

Prognosis-weighted ombnibus tests address these problems. As shown in Table 1, the prognosis-
weighted test rejects as-if random in Caughey and Sekhon’s (2011) data, but an unweighted test
does not. This is likely because, as Figure 2 suggests, there are large imbalances in several prognostic
variables. Consistent with De la Cuesta and Imai (2016), the prognosis-weighted test does not reject
the weaker assumption of continuity, even though the test is based on the most prognostic covariates.
In each case, the omnibus statistic provides a rejection rule based on formal accounting for the varied
prognosis of different covariates, while also addressing multiple testing concerns.

We note also that conclusions using Caughey and Sekhon’s data are sensitive to the treatment of
missing data. Our software implementation, by basing the test of as-if random on the vector product
of prognosis coefficients and differences of means as in equation (??) in section ??, allows us to use the

16. De la Cuesta and Imai (2016), testing for continuity rather than as-if random and correcting for multiple testing, show
weaker treatment-control imbalances in the original U.S. House data than Caughey and Sekhon. See also Hartman (2021),
who analyzes these data using equivalence and traditional tests.

17. Eggers et al. 2015, for example, note the imbalance on measures of lagged incumbency; yet while this variable is
prognostic in the U.S. House, it is not on average across other countries and elections, as we show shortly, underscoring the
importance of formal assessment of prognosis.
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full set of data available for each difference of means, as in covariate-by-covariate tests. However,
listwise deletion leads to meaningfully different results, in particular an insignificant test statistic for
as-if random. See discussion of the treatment of missing data in Online Appendix Section 8.2.

(3) Third and perhaps most importantly, weak covariate prognosis in existing cross-national tests
does not allow for informative tests of identification conditions.

Building on the importance of lagged party incumbency in the U.S. House, Eggers et al. (2015)
in fact test for balance only on this covariate.'® This approach is entirely understandable as well as
practical: lagged party incumbency is readily available across elections and countries, whereas the
availability of other pre-treatment covariates may vary by context.

Yet, the prognostic value of lagged party incumbency in fact varies across countries and types
of elections—and in close elections, it is not in fact prognostic on average. Thus, the correlation
between the vote share of the incumbent party at time ¢ — 1 and time ¢ is 0.79 across all countries and
election types but varies from a low of 0.09 in Brazilian mayoral elections to a high of 0.91 in the
German Bundestag (full data set); in close elections (defined by a bandwidth of 0.5, i.e., the margin
between the winning and runner-up party is less than 1 percentage point), it varies from a high of
0.32 in New Zealand’s post-war parliament to a low of —0.16 is the Canadian House of Commons
(1867-1911) (see Tables A1-A2 in Online Appendix Section 1.2).

Most concerningl?l, the average prognosis is essentially zero across all close elections (Figure 1 and
Appendix Table A2). ¥ For reasons we discussed in sections 3 and 4, this weak covariate prognosis
implies that the cross-national balance tests are uninformative about the balance of potential outcomes
in close elections.

5.2.2 Close elections: methodological and substantive conclusions

Measurement of prognosis and implementation of prognosis weighting helps to synthesize and
explain contrasting previous results in the study of close elections.

Yet, weak prognosis in a cross-national dataset of close elections runs the risk of misleading general
conclusions. With the Eggers et al. (2015) data, prognosis-weighted tests reject neither as-if random
nor continuity (Table 1). Yet, as we have shown, balance tests using irrelevant, non-prognostic
covariates cannot validly support or falsify key identification conditions. In particular, they are prone
to false negatives.

The failure to measure and account for prognosis—common to all the studies—therefore con-
siderably weakens the conclusions that can be drawn. A finding of statistical balance on a single
non-prognostic covariate, as in Eggers et al. (2015), cannot compellingly support the general as-if
randomness of close elections cross-nationally.

More generally, the results underscore the critical importance of measuring prognosis formally
and incorporating it into analyses. Prognosis is an empirical question. A priori, it appears natural
that lagged party incumbency would be highly correlated with future incumbency. In fact, the
correlation is negligible across different countries and types of elections.?

These findings imply that the methodological debate about close elections is far from settled. We
do not view our results as yet confirming or contradicting the identification conditions in general.
They instead suggest the need to leverage a richer set of prognostic covariates for cross-national tests.

18. Eggers et al. (2015: 262-3) argue that (a) the variety of characteristics on which winners and losers of close elections
may vary can all be viewed as proxies for (are highly correlated with) incumbency; (b) testing for other covariates introduces
multiple testing concerns; and (c) incumbency “confers electoral benefits in a variety of electoral settings around the world."

19. Restricting the analysis to close elections may attenuate correlations by truncating the range of variation on incumbent
vote share at time ; yet this is the relevant subset of the data in which to assess prognosis, since this is the set in which balance
tests are typically conducted. Note that prognosis is substantially higher in the post-war U.S. House elections studied by
Caughey and Sekhon, with a prognosis R2 0f 0.83 in the full data and 0.49 in close elections (Figure 1).

20. See Schiumerini (2025) on the varied effects of incumbency across national contexts and types of elections.
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6. Conclusion and recommendations

Covariate prognosis is a critical consideration for balance testing. We have shown that weak prognosis
of covariates can lead to both false negatives and false positives in tests of key identification conditions.
Different covariates vary in their informativeness about potential outcomes. Prioritizing more
prognostic covariates can increase the power and specificity of tests.

Unfortunately, covariate prognosis receives little attention in prominent studies. Existing applica-
tions do not distinguish between informative and uninformative covariates, nor they assess the overall
prognosis of the variables used in tests. They may thus not validly test key identification conditions.

We expand in this concluding section on the recommendations summarized in the introduction.

(1) Measure and report prognosis. As the examples from the close-election debate suggested, empirical
assessment of prognosis is critical. Goodness of fit measures, such as the Prognosis R from a regression
of control potential outcomes on covariates, are useful. High values indicate little residual variation
in potential outcomes once we condition on covariates. Related measures such as root-mean-squared
error can be used to compare prognosis across different covariate sets and fitting methods.

We also urge researchers to inspect the prognosis of individual covariates and the extent the most
predictive variables are balanced or imbalanced. Our software implementation facilitates this by
producing plots of imbalance against prognosis for individual covariates, as in our Figure 2.

Reporting measures of covariate prognosis can help to address an additional concern, which
is that a researcher degrees-of-freedom problem can also hinder balance testing. That is, analysts
who claim to have discovered a natural experiment might (intentionally or inadvertently) selectively
report, omitting tests for the most prognostic covariates if they suggest failures of as-if random.

Requiring diagnostics of prognosis can ameliorate this problem as well. If reviewers request
measures of prognosis to help them assess the likely strength of balance tests, researchers will
have incentives to collect data on the most predictive covariates possible. Researchers will then be
“rewarded" (rather than only “penalized") for using informative covariates in balance tests.

(2) Maximize overall prognosis. Researchers should seek to collect data on the most jointly prognos-
tic covariates possible for use in their balance tests. There is no single recipe for finding such covariates.
However, theoretical and substantive knowledge may suggest what pre-treatment variables are likely
to be most closely associated with outcomes in a particular context. Often (though not always), the
pre-treatment value of the outcome variable is predictive of potential outcomes. Lagged outcomes
should thus be prioritized for data collection, where feasible.

This emphasis on maximizing prognosis also naturally raises the question: how informative must
covariates be to allow valid testing of as-if random? While there is no absolute answer to this question,
our theory and simulations suggested how different levels of prognosis lead to different error rates.
Our simulations suggest reasonable performance even with Prognosis R2 in the range of 0.1-0.2,
though this depends on the specifics of the data-generating process and is only intended as a rough
guide for adequate informativeness of covariates. In general, the more predictive covariates are of
potential outcomes, the more informative and useful are the covariate balance tests.

(3) Prioritize informative covariates. Researchers should then prioritize the most individually
informative covariates in balance tests, providing an omnibus p-value from a prognosis-weighted
procedure. Our analysis suggests that for testing as-if random, linear tests do remarkably well at
boosting power and specificity, even in the presence of highly nonlinear processes for outcomes.
Given the greater simplicity and interpretability of the weighting procedure, we recommend
reporting results from a linear method, including polynomials or interactions of the covariates where
applicable. For RD designs, we recommend using the prognosis-weighted assessement of continuity
as the primary test and, where the test does not reject, reporting a secondary prognosis-weighted
test of as-if random in the same (usually mse-optimal) bandwidth as used for the test of continuity.

Researchers should also often report information on the prognosis and imbalance of each individual
covariate (as in our Figure 2). This will allow for deeper understanding of the particular pattern of
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observed balance and imbalance across prognostic and non-prognostic variables and thus the factors
that drive rejection or non-rejection of as-if random or continuity in a prognosis-weighted omnibus
test. Our R package pwtest includes an implementation for producing plots like Figure 2.

We believe that the procedures we recommend in this paper will lead to more powerful and
specific tests of key identification conditions in applied work. At a minimum, they represent an
improvement over current practice, in which covariate prognosis is typically completely ignored.

Covariate balance testing itself as only one component of assessing identification conditions
that facilitate causal inference. Qualitative evidence on the process of treatment assignment is
important (Dunning 2012, Chapter 7). Testing itself is complementary to other objectives, including
optimization of observed balance to estimate treatment effects and sensitivity analysis (Rosenbaum
2010, Cinelli and Hazlett 2020).

Yet, assessing identification conditions with covariate balance tests should play an important
role in the analysis of experiments, natural experiments, and discontinuities. This article shows that
observed balance can be irrelevant when covariates are not associated with potential outcomes. By
leveraging the power of prognosis, researchers can instead build more useful, informative tests.
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