
ONLINE APPENDIX

The Power of Prognosis: Improving
Covariate Balance Tests with Outcome Information

Clara Bicalho*, Adam Bouyamourn†, and Thad Dunning‡

October 28, 2025

*Tinker Postdoctoral Fellow, Stanford University
†Postdoctoral fellow, Department of Politics, Princeton University
‡Professor of Political Science, Department of Political Science, University of California, Berkeley.

1



Contents
1 Covariate prognosis in published balance tests 4

1.1 Sample of experiments, natural experiments, and discontinuity designs . . . . . . . . . . . 4
1.1.1 Included studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Excluded studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Close elections: the prognosis of lagged incumbency . . . . . . . . . . . . . . . . . . . . 9

2 The logic of standard balance tests 11
2.1 Defining as-if random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Standard balance tests, and two counterexamples . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The logic of balance testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The importance of covariate prognosis for balance tests 13
3.1 Sufficiency of covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Minimal sufficiency and balance tests (Theorem A.1, statement and proof) . . . . . 14

4 Prognosis-weighted tests of as-if random 16
4.1 The fitted value approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 A regression-based test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Theoretical properties of unweighted and prognosis-weighted tests . . . . . . . . . . . . . 18

4.3.1 Distribution of the unweighted sum δUW . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Hotelling’s T 2 statistic, δUW , and the F-distribution . . . . . . . . . . . . . . . . . 24
4.3.3 Conditional distribution of δPWLR . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.4 Testing as-if random with δPWLR and sufficient covariates . . . . . . . . . . . . . . 26

4.4 A bootstrapped prognosis-weighted test of as-if random . . . . . . . . . . . . . . . . . . . 27
4.5 Machine-learning methods for fitting δPW . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 Hypothesis testing with δPWML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.2 Cross-validation and choice of methods . . . . . . . . . . . . . . . . . . . . . . . 29

5 Prognosis-weighted tests in regression-discontinuity designs 30
5.1 Testing continuity of potential outcomes in RD designs . . . . . . . . . . . . . . . . . . . 30

5.1.1 Test statistic: the prognosis-weighted difference of intercepts . . . . . . . . . . . . 31
5.1.2 A prognosis-weighted sum of intercepts . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Further details on prognosis-weighted difference of intercepts . . . . . . . . . . . 33
5.1.4 Statistical inference and hypothesis testing . . . . . . . . . . . . . . . . . . . . . 35

5.2 Testing as-if random in RD designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 The relationship between running variables and outcomes in sampled RD studies . 40

6 Prognosis-weighted equivalence tests 43
6.1 A bootstrapped equivalence test p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Performance of prognosis-weighted tests: Simulations 46
7.1 Steps in the simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Informative covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2



7.2.1 Full set of simulations with informative covariates . . . . . . . . . . . . . . . . . 50
7.3 Uninformative covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Performance of tests at threshold levels of prognosis . . . . . . . . . . . . . . . . . . . . . 56
7.5 Simulations under non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.5.1 k-level polynomials in the potential outcomes model . . . . . . . . . . . . . . . . 58
7.5.2 Covariate interactions in the potential outcomes model . . . . . . . . . . . . . . . 59
7.5.3 Complex DGPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.6 Simulations: main takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Software implementation: R package pwtest 71
8.1 Overview of pwtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Treatment of missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.4 Usage example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3



1 Covariate prognosis in published balance tests

1.1 Sample of experiments, natural experiments, and discontinuity designs
We searched for articles containing the keywords “randomized experiment”, “natural experiment” and
“regression discontinuity design” in their abstract or main body published in the three top journals in
political science (the American Political Science Review, the American Journal of Political Science, and
the Journal of Politics) between 2000 and 2020. From the results of this query, we randomly sampled 150
articles, stratifying by journal.1

We manually reviewed the sample of 150 studies and coded the type of design and whether they
included balance tests either in the main text or in supplementary materials. We then further restricted our
sample to studies that were either (a) natural experiments or regression discontinuity designs (excluding
randomized control trials) and (b) that included balance or placebo tests.2 The final sample contained 40
studies. Our analysis includes all 16 out of these 40 studies for which replication data was available and
complete.

Below, we describe in more detail our processing of the data for each study in our final sample and
highlight analytical choices we made when needed (e.g., specifying which of the outcomes or bandwidths
our analysis used when authors’ analysis included multiple outcomes or bandwidths). We also note which
studies were excluded from the sample and why.

1.1.1 Included studies

Blattman (2009)

Blattman (2009) studies the relationship between violence and political participation of ex-combatants.
The paper rests on the assumption that abduction into the Lord’s Resistance Army (and consequent expe-
rience of violence) was exogenous, though conditionally on the age of children. We focus our analysis on
the first outcome studied: whether an individual voted in 2005, and we use the covariates for which the
author reports balance tests in Table 2. We restrict the analysis to interviewed subjects only, so that the
prognosis and balance analyses use the same sample.

Boas and Hidalgo (2011)
In the first part of their study, Hidalgo and Boas (2011) use a regression discontinuity design to measure
the effect of incumbency on politician’s control of local media. The authors use raw vote margin as a
forcing variable. We use the experimental sample defined by the optimal bandwidth determined by the
authors, which is of 165 votes. Our analysis includes all 18 covariates the authors report in their placebo
test in Table 1.

Eggers et al. (2015) Eggers et al. (2015) use a regression discontinuity design of close elections to mea-
sure incumbency advantage in competitive elections. Authors perform this analysis on elections data in
different countries. We use the lagged running variable as a covariate (vote margin of reference party in

1For code used in the sampling, see https://github.com/[ANONYMIZED]/JSTOR query.
2Keywords sometimes returned studies that cited natural experiments, but were not employing the design, for example. In all
cases, we coded the design according to authors’ own labelling of their study as a natural experiment or regression discontinuity
design.
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time t − 1, vote margin in time t as an outcome, and incumbency at time t as a treatment. Our analysis
restricts the sample to .5% margins around the cutoff point (i.e., the “naı̈ve” specification) (p. 264, fn
12). Using a difference of means within this bandwidth is similar to the approach in Caughey and Sekhon
(2011)’s paper on the US House and thus facilitates comparisons of findings in the two papers.

Fouirnaies and Hall (2014)
Fouirnaies and Hall (2014) use a regression discontinuity design to estimate the effect of incumbency on
campaign contributions in the U.S. House and state legislatures. The authors run separate regressions on
samples of state and federal legislature. We randomly select the state sample to use in our analysis, further
restricting the data to the sample of vote margin ≤ 1%, the smallest bandwidth used by the authors (this
uses the same sample as Table 1, column 4). In our analysis, we include covariates used in Table 4 of the
Appendix: Democratic Party’s share of contributions in election t, year dummies, state dummies and a
chamber dummy (for the state legislatures).

Hall (2015)
Hall uses a regression discontinuity design to estimate the effects of extremist candidates winning pri-
maries on the party’s vote share in the general elections. There are three outcomes of interest: party vote
share, party victory, and the DW-NOMINATE score of the winning general election candidate in the en-
suing Congress. In our analysis, we use the first outcome: party vote share. We also use covariates used
in the author’s results on covariate balance on Table A5: “These variables are as follows: absolute dis-
tance from 50% of the presidential normal vote in the district (the Democratic presidential normal vote for
Democratic primaries, and the Republican presidential normal vote for Republican primaries), averaged
over the period 1980–2010, to measure the partisanship of the district; the extreme candidate’s share of
primary donations; the extreme candidate’s share of primary donations from PACs; the absolute value of
the district’s previous incumbent’s DWNOMINATE score, to measure the ideology of the district; the ab-
solute value of the district’s previous incumbent’s WNOMINATE score; and the party’s lagged vote share
and electoral victory” (p. 35). It is worth noting that the authors use year fixed effects in one of their
balance tests (variable ”abs lag wnom”), but not the others. In our model of prognosis, we have excluded
year fixed effects. In footnote 42, the author argues “the balance tests turn out to be highly similar without
these year fixed effects.” We use a 0.05% vote margin in the as-if random tests, following the sample the
author uses.

Healy and Malhotra (2013)
Healy and Malhotra (2013) are interested in the effect of socialization (in particular having sisters) on the
attitude changes among men. They use the gender of the younger sibling as an instrument for share of a
respondent’s siblings who are female. Our analysis focuses on the first set of results using the Political
Socialization Panel (PSP) survey. There are three survey waves of PSP (1973, 1982, 1997). We randomly
picked one wave: 1973. Authors also use two specifications: whether number of siblings is included as
linear controls or as fixed effect. We former the latter specification in our definition of the covariate ma-
trix. We use the instrument as the treatment variable. We define covariates according to the balance tests
reported in SI Figure S1.

Hidalgo and Nichter (2016)
Hidalgo and Nichter (2016) exploit a discontinuity in audit probability to examine the effect of vote
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buying (which is undermined by audits) on reelection rates of mayors in Brazil. We process the data
following the authors’ replication files, including imputing missing values with median of non-missing
values. We restrict the RD sample according to the optimal bandwidth authors use in the difference in
means analysis (1.5%) in the percentage of electorate as a share of total population in 2006. Our analysis
also focuses on the first outcome: change in voter registration between 2007 and 2008. It is worth noting
that the authors’ balance test analysis in Figure 4 includes ‘electoratechange0708.perpop‘ as a covariate,
although that variable is the same as the one used as the outcome variable in the authors’ analysis. The
label in Figure 4 suggests that the covariate refers to electorate change between 2002 and 2007. However,
the code book does not include a reference to the latter. Instead, in our analysis we use ‘electorate-
change0407.perpop‘ as a covariate, which is the change in electorate between 2004 and June 2007 and as
a percentage of 2007 population. We also exclude ‘num vereadores04‘ (the number of local councilors in
2004) because the covariate values are constant in the non-missing control observations and we are unable
to estimate the variance of our unweighted test statistics or the prognosis coefficient of that covariate.

Holbein and Hillygus (2016)
We produce statistics for the ”Analysis 2: Florida Voter File” portion of Holbein and Hillygus (2016).
Authors explore a fuzzy regression discontinuity design by using date of birth cutoff for eligibility to vote
to measure the effect of preregistration on voter turnout around the elibility cutoff. We use the control
variables the authors include in their balance test in Table A2 and the treatment variable as defined by the
cutoff point (eligibility to vote). The bandwidth of 18 days for the as-if random test is the same used by
authors in Table A2. The test of continuity uses eligibility to vote as treatment (reduced form) and the
bandwidth used by authors to generate results in Table 3 (36 days on either side of the cutoff).

Kim (2019)
Kim (2019) exploits a discontinuity design based on a population threshold that assigns direct democracy
to municipalities in Sweden to study the effect of direct democracy on the political inclusion of newly
enfranchised women. In our analysis, we use the first (and apparent primary) outcome analyzed in the
paper: women’s turnout. Although the author’s analysis pools outcome data across multiple years (with
year fixed effects), ours uses outcome data from 1921 (the first post-treatment year observed in the data
set) as we believe it is the best sample on which to assess prognosis. Our analysis includes all covari-
ates for which the author tests balance in Figures SI 1.1-1.3: left parties’ vote share in 1917, turnout in
1917, ENEP in 1917, share of organized citizens, tax base income in 1918, percentage of the agriculture
in the economy in 1917, land area in 1918, and number of poor relief participants in 1917. We exclude
percentage of female attendees in municipal meetings in 1917 since it is only available for a subset of the
data. The bandwidth we use mimics the optimal bandwidth used by Kim of approximately 286 people
around the cutoff population size. This choice of bandwidth is used in both the test of as-if random and of
continuity.

Klašnja (2015) Our analysis focuses on Klašnja (2015)’s regression discontinuity design to examine in-
cumbency advantage in Romanian mayoral elections. We use the continuous outcome, vote margin, in our
analysis, and define the sample using the optimal bandwidth reported on Table 1, column (2) (bw = 0.149).
The covariates we use are the ones included on the balance table in the Appendix (Table A5). Whereas
authors use a continuous treatment (vote margin) as an instrument for incumbency in the main results,
our analysis uses a binary variable—wint—as the treatment indicating incumbency status. This is because
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there is one-sided non-compliance— not all observations for whom vote margin is greater than 0 corre-
spond to elected officials due to the way the authors choose to code run-off elections (see discussion in the
study’s Appendix Section A2).

Novaes (2018)
We draw from the balance tests reported in the Supplementary Information, Table 2 which includes 27
covariates. For our imbalance analysis, we define the bandwidth at 0.5% (the fourth column in Table 2,
same bandwidth we use in other RDs such as Caughey and Sekhon (2011) and Eggers et al. (2015)). For
prognosis, there are two main outcome variables in the paper (p. 89): party switching (by the candidate)
and party electoral performance (vote shares for congressional candidates in the winning or losing bro-
kers). We use the former in our analysis, since covariates are also measured at the candidate level and we
consider it a more relevant as a measure of prognosis.

Samii (2013)
We run our analysis on the regression discontinuity sample in the study (bandwidth of 5 years above
and below the threshold). We use the covariates that comprise the author’s first placebo test in Table 4
(columns 1-5). According to Samii (2013): “As a further robustness check, I conduct “placebo” tests with
variables that could not possibly have been causally affected by treatment (Imbens and Lemieux 2008).
One wants to do this on pretreatment variables that have strong potential to confound were they to exhibit
discontinuities near the cutoff.” These variables are non-commissioned officer status, years in the military,
years of education pre-war, unit death rate, and family death rate.3 The specifications in the paper involve
a two-stage least squares analysis using location above or below the age threshold for service in an eth-
nically integrated military as an instrumental variable for actual integration. Since what is proposed as
as-if random in this natural experiment is location above or below the age threshold for service of 45 years
(within the 5-year bandwidth), we conduct covariate balance tests using this location (i.e. the value of the
instrument) to define treatment and control groups.

Thomas (2018)
Thomas (2018) measures partisan bias in the allocation of public resources. The author uses a regression
discontinuity design relying on close races to evaluate the impact of co-partisanship between local MPs
and state legislators on the allocation of development project proposals in India. The author tests balance
on a set of six covariates in Table A3. These variables are Margin of Victory of MLA in Previous Term,
Party Turnover of MLA in Previous Term, Percent Literacy, Percent Urban, Percent SC/ST, and Percent
Agricultural Laborers. As the author describes ”the estimates [in Table A3] are obtained by estimating
Equation 1 with the relevant pre-treatment covariate as the dependent variable. The key independent vari-
able is Co-Partisan State Incumbent. Each specification includes a quadratic polynomial in the Forcing
variable and an interaction of each of these terms with the variable Co-Partisan State Incumbent. Controls
include the variables Urban, Allotment Increase and Multiple. State fixed effects, project year fixed ef-
fects and parliament fixed effects are also included.” In our analysis, we include only the six pre-treatment
covariates the author considers in the balance test. We adopt the bandwidth of other close-election study
designs we consider (0.5% margin) for the tests of as-if random.

3Samii (2013: 569-70) also includes a measure item nonresponse for nonsensitive questions in his survey as a placebo outcome.
We do not include that post-treatment variable in our analysis in Figure 2 in the paper.
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1.1.2 Excluded studies

Arceneaux, Lindstädt, and Wielen (2016): Arceneux et al. examine the effect of partisan news media
on legislative behavior. They exploit the incremental rollout of Fox News Channel in the late 1990 to
compare legislative behavior among Democrats and Republicans across districts without Fox News and
districts with partial Fox News access. Authors perform a balance test and results are reported in Table 1,
where results on covariate balance are reported for the following covariates: whether legislator is a Demo-
crat, ideology, seniority, 1996 spending gap, 1996 challenger spending, 1996 quality challenger, 1996
incumbent wins, and 1996 presidential vote. We were not able to identify these covariates in the data. The
authors’ replication material does not include the script used to generate Table 1, and in the absence of a
guidebook, we cannot be sure of which data columns refer to which covariates.

Branton et al. (2015): The authors refer to their design as a natural experiment but did not include a
covariate balance test in the main text or supplementary material, so we regarded the replication materials
as incomplete.

Enns and Richman (2013): This study proposes to measure the effect of election salience (measured by
voters receiving voter guide on state elections) on voters’ incentive to accurately report their presidential
vote incentive. Authors argue their study is a natural experiment. For the first part of the analysis, they
compare outcomes across different windows of the survey period and show that outcomes differ from
zero for a specific window which coincides with a time when all subjects received treatment. Treatment
is administered to all registered voters in California at the same point in time (no randomization), and
these voters are compared with voters in other states. Authors use CEM matching to units outside of the
treated state to account for confounders, but the original set up does not rely on the ”as-if” random as-
sumption. The second part of the analysis compares phone and in-person interviews, assuming subjects
are randomly sampled from the broader US population. This approach more closely resembles a natural
experiment. However, there is no ”control” group per se. Rather, because the comparison is between
phone and in-person surveys it is difficult to justify our approach of using the ”control” sample to measure
prognosis — more specifically, the justification of using the control group to measure covariate prognosis
to the entire sample in expectation is not well adjusted to this research setting.

Galasso and Nannicini (2011): This paper doesn’t actually use the balance test in our usual sense. It
proposes a theory of political selection whereby parties nominate different types of political candidates
in safe elections but converge on the same type of ”high quality” candidate in close elections. Then the
authors test for balance in close elections but that is understood as the absence of partisan differences
in candidate characteristics (i.e. differences across the parties in candidate types in the close elections).
Because difference among politicians on either sides of the cutoff are treated as an outcome, rather than a
placebo test for the effect of induced by the cutoff, we decided to exclude this study from our analysis.

Longo, Canetti, and Hite-Rubin (2014): The data provided with the replication materials did not contain
covariates authors used in the balance checks script (Table 1). These variables were “extremism”, “Reli-
gion Ideology”, and “Religion Behavior” not included in the data provided.

Malesky, Nguyen, and Tran (2014): We could not find the data file that contains the full set of covari-
ates that the authors test balance on (46 covariates in Table 1) and excluded this study from our replication.
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Velez and Newman (2019): Authors had to suppress a key variable of their data set required for their
analysis for privacy purposes, so we were not able to perform our estimation.

In addition, we could not find replication data in the public domain for the following studies: Schick-
ler, Pearson, and Feinstein (2010), Ferwerda and Miller (2014), Chauchard (2014), Davenport (2015),
Kam and Palmer (2008), Hirano (2011), Shami (2012), McClurg (2006), Eggers and Hainmueller (2009),
Findley, Nielson, Sharman (2015), and Mendelberg, McCabe, and Thal (2017).4

1.2 Close elections: the prognosis of lagged incumbency
In this subsection, we analyze the prognosis of lagged incumbency across country-election types, using the
data from Eggers et al. (2015). Table A1 uses all the data, while Table A2 restricts the analysis to the RD
study group with bandwidth 0.5, i.e., those elections where the margin of victory between the two leading
parties is less than 1 percent. The final column of each table shows the correlation between Y0—the party
vote share at time t in the control group–and X, the party vote share at time t − 1.

Table A1: Eggers et al.: Correlation between party vote shares at times t and t-1 across election types (all)

Country Office Corr Y0 X
USA HOUSE OF REPRESENTATIVES, 1880-2010 0.852
USA HOUSE OF REPRESENTATIVES, 1880-1944 0.8712
USA HOUSE OF REPRESENTATIVES, 1946-2010 0.8339
USA STATEWIDE 0.7465
USA STATE LEGISLATURE 0.7681
USA MAYOR 0.6029
CANADA COMMONS, 1867-2011 0.7457
CANADA COMMONS, 1867-1911 0.5383
CANADA COMMONS, 1921-2011 0.7569
UK HOUSE OF COMMONS 0.8434
UK LOCAL COUNCIL 0.7883
GERMANY BUNDESTAG 0.9139
GERMANY BAVARIA, MAYOR 0.4255
FRANCE NATIONAL ASSEMBLY 0.7019
FRANCE MUNICIPALITY 0.6667
AUSTRALIA HOUSE OF REPS, 1987-2007 0.904
NEW ZEALAND PARLIAMENT, 1949-1987 0.8043
INDIA LOWER HOUSE, 1977–2004 0.4316
BRAZIL MAYORS, 2000-2008 0.0847
MEXICO MAYORS, 1970-2009 0.7465
All COUNTRIES ALL RACES 0.7907

4Mendelberg, McCabe, and Thal (2017) did provide replication materials, but these included only scripts and “read me” files
and no data.
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Table A2: Eggers et al.: Correlation between party vote shares at times t and t-1 across election types (RD
study group with bandwidth 0.5—close winners and close losers)

Country Office Corr Y0 X
USA HOUSE OF REPRESENTATIVES, 1880-2010 0.1417
USA HOUSE OF REPRESENTATIVES, 1880-1944 0.0649
USA HOUSE OF REPRESENTATIVES, 1946-2010 0.2389
USA STATEWIDE -0.1045
USA STATE LEGISLATURE 4e-04
USA MAYOR 0.0173
CANADA COMMONS, 1867-2011 -0.064
CANADA COMMONS, 1867-1911 -0.1625
CANADA COMMONS, 1921-2011 -0.0383
UK HOUSE OF COMMONS 0.1764
UK LOCAL COUNCIL 0.0513
GERMANY BUNDESTAG -0.052
GERMANY BAVARIA, MAYOR -0.1254
FRANCE NATIONAL ASSEMBLY -0.0647
FRANCE MUNICIPALITY 0.1305
AUSTRALIA HOUSE OF REPS, 1987-2007 0.2946
NEW ZEALAND PARLIAMENT, 1949-1987 0.3236
INDIA LOWER HOUSE, 1977–2004 -0.073
BRAZIL MAYORS, 2000-2008 -0.0487
MEXICO MAYORS, 1970-2009 0.0065
All COUNTRIES ALL RACES 0.0221

Note that the overall average in the final row of Table A5—the average correlation across all country-
election types—is 0.02, whereas it is essentially zero in Figure 1 in the paper. The very minor difference
stems from the use here of the 0.5 bandwidth—the preferred bandwidth of Eggers et al. (2015)—whereas
in Figure 1, we use the MSE-optimal (default) bandwidth returned by the R routine rdrobust, via our
package pwtest in which rdrobust is a dependency (Calonico et al. 2015). In this case, the default returns
a bandwidth of about 0.415 rather than 0.5. See our replication code for Tables A1 and A2 for further
details.
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2 The logic of standard balance tests
In this section, we develop the argument made in Section 3 of the paper formally, using a design-based,
finite population set-up. We use the same notation and framework for exposition of our prognosis-weighted
tests in section 7 of the paper and section 7.2 in this appendix.

Thus, here we show why balance tests based on the independence of treatment assignment and covari-
ates typically do not validly test independence of treatment and potential outcomes, give a condition under
which they do, and discuss measurement and reporting of covariate prognosis.

2.1 Defining as-if random
Consider a study with a completely enumerated finite population of N units indexed by i = 1, . . . ,N and
one treatment and one control condition. Let Yi(1) and Yi(0) be potential outcomes—that is, the outcomes
for unit i that would be realized under assignment to treatment or control groups, respectively. The causal
effect for each unit is τi = Yi(1) − Yi(0), while the Average Treatment Effect (ATE) is τ = E[Yi(1) − Yi(0)],
where the expectation is taken over the draw of a single unit at random from the finite population.5 The
random variable Zi ∈ {0, 1} denotes treatment assignment, with 0 for the control group and 1 for the
treatment group; an N × 1 random vector Z collects the Zi. The sizes of the treatment and control groups
are fixed at n1 and n0, respectively, with n1 + n0 = N. The set-up is design-based in that the only source of
random variation is the treatment assignment vector Z; potential outcomes are fixed.

In valid natural experiments, the following condition must hold:

Assumption 1. (As-if Random Assignment) Z ⊥⊥ {Y(1), Y(0)}

where ⊥⊥ means “is independent of.”6 In words, the random treatment variable is assigned indepen-
dently of potential outcomes.7 As-if random ensures, for example, that sicker patients do not go system-
atically to the treatment group in a drug trial studying health outcomes, or that those more prone to vote
do not disproportionately receive a vote-mobilizing intervention. If as-if random holds, the true ATE is
estimable using simple, transparent methods (Freedman 1999).

The assumption of as-if random, however, can be the “Achilles Heel” of natural experiments (Dunning
2008). In a true randomized experiment, a chance protocol under the control of a researcher (Fisher 1935)
ensures that treatment is independent of potential outcomes, as well as any fixed covariates. In natural
experiments, by contrast, as-if random is held to be an implication of a concrete process that produces a
haphazard allocation to treatments, in particular, one that does not depend on units’ potential outcomes.
While qualitative information and ancillary tests may support this assertion (Dunning 2012), assumption
1 cannot be directly verified due to the “fundamental problem of causal inference”: {Yi(1), Yi(0)} is not
completely observed for any unit (Holland 1986).

With additional assumptions discussed below, however, it is possible to make as-if random falsifiable.

5This formalization embeds the stable unit treatment value assumption (Cox 1958, Rubin 1978).
6Assumption 1 is also sometimes called (strong) ignorability.
7Suppose there are

(
N
n1

)
possible vectors Z in which n1 units are assigned to treatment and n0 units go to control. If each vector

is equally likely, the chances do not depend on the vectors {Y(1), Y(0)} so Assumption 1 holds.
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2.2 Standard balance tests, and two counterexamples
When can the balance of observed covariates test as-if random? To answer this question, consider a space
of possible covariates X . Suppose that X = {X S ,X N} (‘signal’ and ‘noise’, respectively – compare
Liu and Ruan 2020), where X S contains all information about potential outcomes and X N contains none.
Treat X S and X N as finite but potentially unobserved. Thus,

X N ⊥⊥ {Y(1),Y(0)} and X S ⊥̸⊥ {Y(1),Y(0)}, (1)

where “⊥̸⊥” means “not independent of.”
There are two facts to notice about this setup. First, because X S contains all and only the information

about potential outcomes, treatment assignment Z will be independent of X S if and only if it is inde-
pendent of potential outcomes. Second, we might observe noise covariates that are correlated with the
treatment assignment process but of no relevance in predicting treatment effects; or we might observe pure
noise unrelated to both treatment assignment and potential outcomes.

2.2.1 The logic of balance testing

Now, denote the set of covariates that a researcher observes—i.e., actually measures—by the matrix X,
with rows for the units and columns containing measured pre-treatment covariates or placebo outcomes.
We emphasize that X may not coincide with the possible covariates X : the problem is that researchers
may only be able to collect data on a subset of these possible covariates. The measured covariates may
thus contain some, all, or none of the signal variables X S .

Standard practice tests the claim that Z ⊥⊥ X rather than directly testing Assumption 1. The reasoning
appears to be the following:

Claim 1. (Standard Practice: Balance tests)

Z ⊥⊥ X ⇐⇒ Z ⊥⊥ {Y(1),Y(0)}

where⇐⇒ means “if and only if.” Hence, Z ⊥̸⊥ X ⇐⇒ Z ⊥̸⊥ {Y(0),Y(1)}.

Claim 1 is not correct, however.

Counterexample to Claim 1: False positives. Suppose that Z ⊥⊥ {Y(1),Y(0)}, so that as-if random
assignment holds, and that Nature has adversarially chosen Z ⊥̸⊥X N . Then if X ⊆X N , we have that
Z ⊥̸⊥ X but treatment assignment is independent of potential outcomes. The⇐ direction of Claim 1 does
not follow.

A researcher who believed Claim 1 might perform a balance test, observe imbalance between treatment
and control groups on some subset of covariates, and conclude that treatment was not randomly assigned.
However, this is a false positive if the imbalanced covariates are unrelated to potential outcomes: their
imbalance does not constitute evidence that as-if random fails.

For example, in an observational study of the efficacy of a new drug, men might tend to select into
the treatment group. Yet gender may be unrelated to health status or responsiveness to the treatment. If
we have only data on gender, we may wrongly reject as-if random based on the covariate imbalance, even
though potential outcomes themselves may be balanced in expectation.
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Conversely—and perhaps most importantly, as we might worry most about false claims to a natural
experiment—balance on a spurious covariate does not imply that treatment is assigned independently of
potential outcomes, as the next counterexample shows.

Counterexample to Claim 1: False negatives. Assume now that Z ⊥̸⊥ {Y(1),Y(0)}, so that as-if random
assignment fails, but Z ⊥⊥X N . If X ⊆X N , we have Z ⊥⊥ X, but it does not follow that treatment is
assigned independently of potential outcomes. The⇒ direction of Claim 1 does not follow.

For example, sicker patients might select into the treatment group. As-if random may thus fail. Health
after an intervention may be closely related to prior health, yet we may fail to measure the latter, signal
covariate. In contrast, men may be as likely to select into treatment as women, leading to expected balance
on gender. Yet, if gender is not related to potential outcomes or responsiveness to treatment, its observed
balance cannot readily validate as-if random. If we base a balance test on gender, we may thus falsely fail
to reject as-if random.

In sum, covariates differ in their informativeness about potential outcomes. If we only measure noise
covariates—those unrelated to potential outcomes—then finding balance or imbalance on those covariates
does not allow us to test as-if random assignment.

3 The importance of covariate prognosis for balance tests
Here we give a condition for validly rejecting as-if random (Assumption 1 in the text and in section 2
above), based on the non-independence of treatment assignment and covariates.

3.1 Sufficiency of covariates
For this, we use the following definition from Dawid (1979) (see also Pearl 1988; Wang and Wang 2020):

Definition 1. ([Minimal] Sufficiency of Covariates) A set of observed covariates X ⊂ X is sufficient for
Y(1), Y(0) if

{Y(1), Y(0)} ⊥⊥ X |X

and minimally sufficient for Y(1), Y(0) if, in addition, ∀S ⊂ X:

{Y(1), Y(0)} ⊥̸⊥ X |S.

In words, if the observed covariates are sufficient for the potential outcomes, then they contain all
possibly observable information about potential outcomes. Moreover, if the covariates are minimally
sufficient, then they contain all and only the possible information (and any smaller subset S of X would no
longer be sufficient).8

8Equivalently, if X is sufficient, σ(X S ) ⊆ σ(X); moreover, if X is minimally sufficient, σ(X S ) = σ(X). See Lemma 1. This
is also equivalent to Pearl (1988)’s notion of a Markov Blanket.
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3.1.1 Minimal sufficiency and balance tests (Theorem A.1, statement and proof)

When measured covariates are minimally sufficient, as-if random fails if and only if treatment assignment
depends on covariates:

Theorem 1. Suppose X is minimally sufficient for {Y(1), Y(0)}. Then, Z ⊥̸⊥ X ⇐⇒ Z ⊥̸⊥ {Y(1),Y(0)}.
Proof: See subsection 3.1.1.

If X is sufficient for the potential outcomes, then it must contain all the information contained in X S —
that is, covariates that are not independent of the potential outcomes. Hence, an association between X and
Z implies an association between the potential outcomes and Z. The⇐ direction controls false negatives:
when covariates are sufficient, then when treatment is not assigned independently of potential outcomes,
we should expect a well-powered balance test to fail.

If, in addition, X is minimally sufficient, any association between {Y(1), Y(0)} and X will induce non-
independence of X and Z. Thus, the ⇒ direction controls false positives: if covariates are minimally
sufficient, a failed balance test implies a failure of as-if random.

To prove Theorem A.1, we first develop alternate definitions of sufficiency and minimal sufficiency,
showing that these are equivalent to the definition above.

Suppose that there exists a unique X S ⊆ X such that σ(X S ) = σ({Y(1), Y(0)}), where σ(·) denotes
sigma algebras. Then we have:

Definition A.1 Minimal sufficiency of covariates (alternate version of Definition 1 in the text)

If X is sufficient, σ(X S ) ⊆ σ(X); moreover,

If X is minimally sufficient, σ(X S ) = σ(X).

Note that these definitions of sufficiency and minimal sufficiency are equivalent to those given above,
as the next lemma shows.

Lemma 1. Definition 1 holds ⇐⇒ Definition A.1 holds.

For sufficiency, take any X′ ⊆X \ X . Then

σ(X S ) ⊆ σ(X)⇐⇒ σ({Y(1), Y(0)}) ⊆ σ(X)
⇐⇒ σ(X′ ∩ {Y(0), Y(1)}) = ∅, ∀X′ (by the definition of X′)
⇐⇒ {Y(1), Y(0)} ⊥⊥ X′

⇐⇒ {Y(1), Y(0)} ⊥⊥X |X.

The idea is that, when X is sufficient, there can be no other variable X′ that also contains information
about the potential outcomes, in which case potential outcomes are conditionally independent of any other
variable given X. Conversely, if X is not sufficient, there must be such an X′, and we do not have the
conditional independence of potential outcomes and X given X.
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For minimal sufficiency, we start with Definition A.1, which implies that X is minimally sufficient if,
in addition: ∀S ⊂ X, ∃X′ ⊂ X \ S, such that {Y(1),Y(0)} ⊥̸⊥ X′|S. (This says that there must be some
subset of X \ S that contains information about potential outcomes.) Then,

σ(X S ) = σ(X)⇐⇒ σ({Y(0), Y(1)}) = σ(X)
⇐⇒ ∀S ⊂ X, σ(S) ⊂ σ(X) = σ({Y(0), Y(1)})
⇐⇒ ∃ X′ ⊆X \ S s.t. σ(X′ ∩ {Y(0), Y(1)}) ⊆ σ({Y(1), Y(0)})
⇐⇒ {Y(1), Y(0)} ⊥̸⊥ X′|S
⇐⇒ {Y(1), Y(0)} ⊥̸⊥X |S

Intuitively, if X is minimally sufficient, then any strict subset of X does not include all information
about potential outcomes; so there is some set in X not in the smaller set that also has information about
potential outcomes. Therefore, conditioning on the smaller set does not make the collection of possible
covariates conditionally independent of potential outcomes. (Compare Pearl 1988). Thus, Definition 1
can hold if and only if Definition A.1 holds.

Proof of Theorem A.1: With these preliminaries, we can prove Theorem A.1, which states:

Assume X is minimally sufficient for {Y(1), Y(0)}. Then, Z ⊥̸⊥ X ⇔ Z ⊥̸⊥ {Y(1),Y(0)}.

Proof. We show the⇒ direction by contrapositive, noting that

(¬Z ⊥̸⊥ {Y(1),Y(0)} =⇒ ¬Z ⊥̸⊥ X)
⇐⇒

(Z ⊥̸⊥ X =⇒ Z ⊥̸⊥ {Y(1), Y(0)}).

¬Z ⊥̸⊥ {Y(1),Y(0)} =⇒ Z ⊥⊥ {Y(1), Y(0)}
=⇒ σ(Z) ⊥⊥ σ({Y(1), Y(0)})
=⇒ σ(Z) ⊥⊥ σ(X) [By minimal sufficiency]
=⇒ Z ⊥⊥ X
=⇒ ¬Z ⊥̸⊥ X

We have verified the contrapositive, which allows us to conclude that Z ⊥̸⊥ X =⇒ Z ⊥̸⊥ {Y(1), Y(0)}.
To show the (⇐) direction, note that assuming X is minimal sufficient implies that X is sufficient.

Then:

Z ⊥̸⊥ {Y(1),Y(0)} =⇒ σ(Z) ⊥̸⊥ σ({Y(1), Y(0)})

=⇒ σ(Z) ⊥̸⊥ σ(X S )
=⇒ σ(Z) ⊥̸⊥ σ(X) [By sufficiency]
=⇒ Z ⊥̸⊥ X

□
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In sum, we have assumed the existence of a set X S that must contain all the information in the
potential outcomes. If covariates X are minimally sufficient they must contain all and only the information
in the potential outcomes. Hence constructing a test of the independence of Z and a minimal sufficient
covariate set X is equivalent to constructing a test of the independence of Z and the potential outcomes.

4 Prognosis-weighted tests of as-if random
In this section, we describe the theoretical distributions of several statistics used in the paper and provide
formal details on the bootstrap hypothesis test of as-if random.

4.1 The fitted value approach
Consider as before a study with a finite population of N units indexed by i = 1, . . . ,N and one treatment
and one control condition. Let Yi(1) and Yi(0) be potential outcomes under exposure to treatment and to
control, respectively. The causal effect for each unit is τi = Yi(1) − Yi(0), while the Average Treatment
Effect (ATE) is τ = E[Yi(1)−Yi(0)], where the expectation is taken over the draw of a single unit at random
from the finite population.9 The random variable Zi ∈ {0, 1} denotes treatment assignment, with 0 for the
control group and 1 for the treatment group; an N × 1 random vector Z collects the Zi. This set-up is
design-based in that the only source of random variation is the treatment assignment vector Z; potential
outcomes are fixed.

As-if random (Assumption 1) motivates the following testable null and alternative hypotheses:

H0 : E[Y(0)T − Y(0)C] = 0
HA : E[Y(0)T − Y(0)C] , 0. (2)

Here, Y(0)T is the average value of potential outcomes under control in the treatment (“T”) group sample,
while Y(0)C is the average value of potential outcomes under control in the control (“C”) group sample.
Both are random variables when treatment assignment is randomized.

The logic: if as-if random holds, the treatment and control group averages can be viewed as the means
of samples drawn at random from the same finite population. Thus, the expected averages are the same in
each sample, as under the null hypothesis H0. Conversely, if treatment assignment were not randomized
so that Z ⊥̸⊥ {Y(1), Y(0)}, it would follow that the average potential outcomes in the treatment and control
groups would differ in expectation, as under the alternative hypothesis HA.

To test H0, the problem is to estimate the unobserved difference of expectations. This in turn requires
a procedure for predicting Y(0)T in the treatment sample, where potential outcomes under control are
not observed. With a procedure for forming this fitted value in hand, we can form a test statistic as the
difference

δPW = Ŷ(0)T − Ŷ(0)C, (3)

that is, the fitted average Y(0) in the treatment group minus the fitted average Y(0) in the control group. Es-
sentially, we fit Y(0) in the control group, which gives us prognosis weights, and then apply this weighting

9This formalization embeds the stable unit treatment value assumption (Cox 1958, Rubin 1978).

16



procedure to the covariates in the treatment group. Thus, δPW is the prognosis-weighted (”PW”) difference
(”δ”) in fitted values across the treatment and control groups. We focus on control group regressions, as in
e.g. Hansen (2008) and Stuart et al. (2013), because pre-treatment values of the outcome variable, which
are sometimes measured, may tend to be especially prognostic for potential outcomes under control.

4.2 A regression-based test
Consider the sample regression of the outcome variable on covariates in the control group:

Ŷ(0)C = XC β̂C (4)

= Y(0)C,

where the 1×p vector XC gives the average value of the p covariates in the control group and the p×1 vector
β̂C gives the coefficients from the control group regression.10 Descriptively, the control group regression
evaluated at the average value of the covariates is exactly the sample average Y(0)C.

While we cannot fit the analogous finite-population regression—because we do not see Yi(0) for units
in the treatment group—under as-if random the control group is a simple random sample from the finite
population. Equation (4) can thus be viewed as a regression-weighted estimator for the average potential
outcome under control in the finite population (Cochran 1977, Chapter 7).

We cannot run a regression like equation (4) in the treatment group, because in that sample we see
potential outcomes under treatment, rather than potential outcomes under control. However, by the same
logic, the expectation of the coefficient we would obtain—if we could run that regression in the treatment
sample—is clearly the same as the expectation of β̂C, where the latter is viewed as a random variable.
Under a null hypothesis of as-if random, we can therefore estimate the average of the potential outcomes
under control in the treatment group as

Ŷ(0)T = XT β̂C, (5)

where XT is the vector of average values of covariates in the treatment group.
Subtracting (4) from (5) gives an estimator of the unobserved difference of the expectations (3), valid

under H0. Thus we have

Ê[Y(0)T − Y(0)C] = (XT − XC) β̂C

=

p∑
j=1

β̂C
j δ j (6)

≡ δPWLR,

with “PWLR” for “prognosis-weighted linear regression.”
In (6), each δ j is the difference of means on covariate j across the treatment and control groups. The

weight β̂C
j is the jth coefficient from the multiple regression of outcomes on covariates in the control group.

We recommend standardizing Y(0) and all covariates before forming the fitted values in equations (4) and
(5) and the weighted sum in (6); this is the default option in our accompanying R package. This ensures

10Here, β̂C = (
∑n0

i=1 XiX
′

i )
−1∑n0

i=1 XiYi(0), is a p × 1 vector with elements β̂ j for j = 1, . . . , p. Here we index by i = 1, . . . , n0 the
random subset of units sampled into the control group from the N units in the finite population.
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that the contribution of each term to the sum is not a function of the measurement scale. The standardized
regression coefficients will be larger in absolute value for more prognostic covariates, while they vanish
when the partial correlation between Y(0) and X j is zero.

It is important to emphasize that β, the coefficient of the finite- population regression corresponding to
(4), has no causal interpretation: the regression simply provides the best linear approximation of the po-
tential outcomes Y(0) given X. Covariates are fixed features of units that are not here considered amenable
to manipulation; even if they were, there is no expectation or requirement that manipulation would lead to
expected changes in the value of the outcome variable. The procedure simply allows for measurement of
covariate prognosis.

The use of the test statistic δPWLR has several possible advantages, relative to those we consider next.
One is its simplicity and intelligibility: the weights (regression coefficients) are readily interpretable as
the relative informativeness or prognosis of the respective covariate, relative also to the other covariates.11

Another is its close connection to current practice. Rejection of as-if random in tests using δPW will be due
to treatment-control differences of covariate means, as in standard covariate-by-covariate tests (Section 2).
Yet, unlike standard practice, the test prioritizes the variables most informative about potential outcomes,
potentially allowing more powerful and specific tests—a conjecture we evaluate in section ??. Finally, as
with other procedures we consider next, the test combines information on prognosis across covariates to
form an ombnibus statistic to which we may attach a single p-value to test H0.

4.3 Theoretical properties of unweighted and prognosis-weighted tests
Here we discuss several theoretical properties of test statistics presented in the paper or used in the simula-
tions. First, we derive the theoretical distribution of the unweighted sum of covariate differences of means,
which is useful as a benchmark since our key test statistic δPWLR is the weighted version of this sum. We
then discuss its relationship to Hotelling’s T 2, another unweighted test used for testing multivariate equal-
ity of means, and we relate this to the F-distribution. In our simulations, we compare the performance of
tests based on the unweighted sum and on Hotelling’s T 2 to those based on key test statistic δPWLR.

While we also derive the large-sample conditional distribution of our key test statistic δPWLR, con-
ditional on the weights β̂C

j , for reasons outlined in the main text, we recommend the resampling-based
(bootstrap) hypothesis test proposed there and in Section 4.3 of this Appendix. In particular, asymptotics
may not apply in small studies, and the random variable β̂ is dependent on the randomness in XT −XC. We
thus recommend the bootstrap test, which accounts for this dependence, rather than use of the asymptotic
variance of β̂C

j , holding the weights fixed. However, the derivations this section are useful for defining and
further highlighting several theoretical features of the statistics.

We also show in subsection 4.2.4 that when covariates are sufficient, we can validly use a test based on
δPWLR to assess as-if random. This is an empirical corollary to Theorem 1 in Section 3.

11By the Frisch–Waugh–Lovell (FWL) theorem or “regression anatomy” (Angrist and Pischke 2009: 3.1.2), each element β j

of p × 1 vector of coefficients β in the analogous finite-population regression can be represented as the coefficient from the
bivariate regression of Y(0) on the residual of X j on the other p − 1 covariates.
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4.3.1 Distribution of the unweighted sum δUW

Consider as a benchmark the unweighted sum,

δUW =

p∑
j=1

δ j, (7)

where each δ j is the difference of means across the treatment and control groups on covariate j. Here,
“UW” stands for “unweighted.” Note that each difference of means δ j is a random variable, with the
randomness induced solely by treatment assignment, and thus so is the sum δUW .12 Here, each covariate
difference—unlike in our preferred approach—receives the same weight.

The distribution of the random variable δUW is then as follows. Let σ2
X j

denote the variance of the co-
variate X j calculated over all N units in the finite population and σX j,Xk be the finite-population covariance
between covariate X j and covariate Xk.13 The sizes of the treatment and control groups are fixed at n1 and
n0, respectively, with n1 + n0 = N. For ease of exposition but without loss of generality, suppose n1 = n0.

Theorem A.1 (Distribution of the unweighted sum of covariate differences of means). When treatment
assignment is randomized, (1) E(δUW) = 0, and (2) the sum has an exact and fully observable variance

Var(δUW) =
N2

N − 1
1

n0(n1)

 p∑
j=1

σ2
X j
+ 2

p∑
j<k

σX j,Xk ,

 .
Also, (3) δUW is asymptotically normal.

Before turning to the proof, we note that the variance in Theorem A.1 is exact and fully observable—
not estimated from sample data—because we can observe covariate values for every unit in the finite
population. Thus, the variances and covariances σ2

X j
and σX j,Xk can be calculated exactly for all j and all k

in a given data set. The variance of the difference of means for each covariate is given by a formula that
reflects both sampling without replacement from the finite population and the dependence between the
treatment and control group means, similar to the variance of an estimator of an average treatment effect.14

However, unlike in that case, here there are no unobservable sample covariances because Xi is invariant to
treatment assignment.15 Note also that when each covariate is standardized, so that the finite-population
variance of each covariate is equal to 1, we have

∑p
j=1 σ

2
X j
= p and each covariance σX j,Xk is the coefficient

of correlation r between X j and Xk.
We consider in turn the three claims in the theorem—i.e., regarding (1) the expectation, (2) the vari-

ance, and (3) asymptotic normality of the random variable δUW .

Proof. (1). Each random variable δ j can be written (1/n1)Z′X j + (1/n0)(1 − Z)′X j = XT
j − XC

j , where XT
j

12 To make the dependence on Z explicit, for example, each random variable δ j could be written (1/n1)Z′X j+(1/n0)(1−Z)′X j =

XT
j − XC

j , where XT
j and XC

j are the means of covariate j in the treatment and control groups, respectively.
13That is, σ2

X j
= 1

N
∑N

i=1(Xi j − X j)2, and σX j,Xk =
1
N
∑N

i=1(Xi j − X j)(Xik − Xk).
14See Neyman (1923); Freedman (2007: A32-A34); Samii and Aronow (2011, Theorem 2); Gerber and Green (2012: 57);

Dunning (2012: 193).
15Thus, this is similar to the variance of ÂT E under the strict null hypothesis that Yi(1) = Yi(0) for all i.
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and XC
j are the means of covariate j in the treatment and control groups, respectively. Random assignment

of the treatment implies that Zi y ui for any fixed variate ui, including each of the X js. Viewed differently,
the treatment and control groups are both simple random samples from the same underlying population.
The expectations of the two sample means therefore coincide: E(δ j) = E(XT

j )−E(XC
j ) = 0 for j = 1, . . . , p.

Thus, after distributing expectations, E(δUW) = E(δ1) + E(δ2) + . . .E(δp) = 0.
(2). Next, for the variance, consider as a preliminary two arbitrary features (ui, vi) in the finite popula-

tion i = 1, . . . ,N. Define the population variances as

σ2
u =

1
N

N∑
i

(ui − u)2 (8)

and

σ2
v =

1
N

N∑
i

(vi − v)2, (9)

where u = 1/N
∑N

i=1 ui and v = 1/N
∑N

i=1 vi are the population means. The population covariance between
these features is

σu,v =
1
N

N∑
i

(ui − u)(vi − v). (10)

Let Uz denote the sample average in the treatment (z = 1) or control (z = 0) group, and similarly for
Vz.16 Here, Uz and Vz are random variables, due to randomness in Z. If we observe both ui and vi in the
treatment sample, then we have

Cov(U1,V1) =
N − n1

N − 1
σu,v

n1
=

n0

N − 1
σu,v

n1
, (11)

since the features are drawn without replacement from a finite population of size N (Cochran 1977, Theo-
rem 2.3). If we observe ui and vi in the control sample, then

Cov(U0,V0) =
N − n0

N − 1
σu,v

n1
=

n1

N − 1
σu,v

n1
(12)

(If n1 , n0, these theoretical covariances must be figured separately for the two groups).
If we observe ui only for i in the treatment sample and vi only for i in the control sample, the variances

of the samples averages are

Var(U1) =
N − n1

N − 1
σ2

u

n1
=

n0

N − 1
σ2

u

n1
(13)

and

Var(V0) =
N − n0

N − 1
σ2

v

n0
=

n1

N − 1
σ2

v

n0
. (14)

Using combinatorial calculations (see Freedman et al. 2007: A32-34 or Neyman et al. 1923, also Lin et al.

16Thus, U1 can be written as 1
n1

Z′u and U0 as 1
n0

(1− Z)′v, where u is an N × 1 vector collecting the N values of ui; we can write
Vz similarly. This notation clarifies that randomness in the sample means depends on treatment assignment Z.
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2023), the covariance of the sample averages is

Cov(U1,V0) = −
σu,v

N − 1
. (15)

The variance of the difference of the sample means U1 − V0 is then

Var(U1 − V0) = Var(U1) + Var(V0) − 2Cov(U1,V0)

=
1

N − 1

[
n0 σ

2
u

n1
+

n1 σ
2
v

n0
+ 2 σu,v

]
=

1
N − 1

[
n2

0 σ
2
u + n2

1 σ
2
v + 2n1(n0) σu,v

n1(n0)

]
, (16)

using (13), (14), and (15) in the second step. (For related derivations, see Neyman et al. 1923; Freedman
et al. 2007: A32-A34); Samii and Aronow 2012: Theorem 2; Gerber and Green 2012: 57; or Dunning
2012: 193.17

With these preliminaries, we can derive the variance of the random variable δUW . We have

Var(δUW) = Var(
p∑

j=1

δ j)

=

p∑
j=1

Var(δ j) + 2
p∑

j<k

Cov(δ j, δk). (17)

First, Var(δ j) has the same form as the variance of U1 − V0 when ui = vi for all i (since X ji has the same
value whether unit i is assigned to the treatment or the control group). Using equation (16), we find

Var(δ j) = Var(X j1 − X j0)

=
1

N − 1

n1 σ
2
X j

n0
+

(n0) σ2
X j

n1
+ 2 σ2

X j


=

1
N − 1

n2
1 σ

2
X j
+ n2

0σ
2
X j
+ 2n0(n1) σ2

X j

n0(n1)


=

1
N − 1

 (n0 + n1)2σ2
X j

n0(n1)

 .
=

1
N − 1

N2σ2
X j

n0(n1)

 . (18)

Here, X j1 indicates the sample average of X j in the treatment group and X j0 indicates the sample average
in the control group.18 Also, σ2

X j
is (8) with ui = Xi j: it denotes the variance of the covariate X j calculated

17Following the previous note, the difference of means U1 − V0 can be written as δu,v = 1
n1

Z′u + 1
n0

(1 − Z)′v, where u and v are
the N × 1 vectors collecting the N values of ui and vi, respectively.

18We could write X j1 =
1
n1

Z′X j and X j0 =
1
n0

(1−Z)′X j to clarify dependence of the sample averages on the random assignment
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over all N units in the finite population, that is,

σ2
X j
=

1
N

N∑
i=1

(Xi j − X j)2, (19)

where X j is the mean of X j over the N study units. Also, since the covariance of a variable with itself is
its variance, Cov(X j, X j) = σ2

X j
.

Thus, we can calculate an exact, fully observable sampling variance for each δ j. As under a strict
null hypothesis, where one “sees” potential outcomes for unit i in both treatment and control conditions
(by the stipulation that Yi(1) = Yi(0) for all i), here we observe covariate values Xi under both treatment
and control conditions, whether unit i is in fact assigned to the treatment or the control group—because
covariates are fixed values invariant to treatment assignment.19 Note also that σ2

k is fully observed because
we see values of each covariate for every study unit. In sum, there are no terms in (18) or (27) that would
need to be estimated from sample data: this exact variance is fully observable.

As for Cov(δ j, δk), we have

Cov(δ j, δk) = Cov(X j1 − X j0, Xk1 − Xk0)

= Cov(X j1, Xk1) − Cov(X j1, Xk0) − Cov(X j0, Xk1) + Cov(X j0, Xk0). (20)

The first and fourth terms in (20) are the covariances of the sample averages of two features, both sampled
without replacement from a finite population of size N. Using (11) and (12), we have

Cov(X j1, Xk1) =
N − n1

N − 1
σX j,Xk

n1
=

n0

N − 1
σX j,Xk

n1
(21)

and
Cov(X j0, Xk0) =

N − n0

N − 1
σX j,Xk

n0
=

n1

N − 1
σX j,Xk

n0
. (22)

The second and third terms in (20) are instead the covariances of the sample averages of two features, one
assigned to the treatment group and one assigned to the control group. Using (15), we have

Cov(X j1, Xk0) = Cov(X j0, Xk1) = −
1

N − 1
σX j,Xk , (23)

where σX j,Xk is the population covariance given in (10), with the covariates X j and Xk in place of u and v.

vector Z.
19If ui = Yi(1) is a potential outcome under treatment and vi = Yi(0) is a potential outcome under control, then the random

variable δu,v estimates the average treatment effect. Then Var(δu,v) is the variance of ÂT E under a strict null hypothesis of no
unit-level effect.
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Thus,

Cov(δ j, δk) =
n0

N − 1
σX j,Xk

n1
+ 2
σX j,Xk

N − 1
+

n0

N − 1
σX j,Xk

n0
(24)

=
σX j,Xk

N − 1
[
n0

n1
+ 2 +

n1

n0
]

=
σX j,Xk

N − 1
[

n2
0

n1(n0)
+

2n1(n0)
n1(n0)

+
n2

1

n1(n0)
]

=
σX j,Xk

N − 1
[
n2

0 + 2n1(n0) + n2
1

n1(n0)
]

=
σX j,Xk

N − 1
[
(n0 + n1)2

n1(n0)
]

=
σX j,Xk

N − 1
[

N2

n1(n0)
].

Returning to (17) and substituting for Var(δ j) and Cov(δ j, δk), we have

Var(δUW) = Var(
p∑

j=1

δ j) (25)

= [
p∑

j=1

Var(δ j) + 2
p∑

j<k

Cov(δ j, δk)]

= [
p∑

j=1

1
N − 1

N2σ2
X j

n0(n1)

 + 2
p∑

j<k

σX j,Xk

N − 1
[

N2

n1(n0)
]

= [
N2

N − 1

 1
n0(n1)

p∑
j=1

σ2
X j

 + 2
N2

N − 1
1

n1(n0)

p∑
j<k

σX j,Xk]

=
N2

N − 1
1

n0(n1)

 p∑
j=1

σ2
X j
+ 2

p∑
j<k

σX j,Xk

 .
Thus, data on p covariates for N units allows us to calculate the exact variance of the sum of the

covariate differences of means. As with the variance of each δ j, Var(δ) is fully observable: it need not be
estimated from sample data because σ2

X j
and σk, j are both measurable from the covariate data for the N

units in the population. Note also that here we assume that n1 and n0 are fixed, not random.20

Note that when the covariate X j is standardized as

(Xi j − X j)/σ j, (26)

20This is standard in experimental analysis, where the group sizes are planned in advance of randomization; for a natural
experiment, the assumption is more debatable. If the group sizes are random variables, ratio-estimator bias may arise for
small samples, though with moderately large n1 and n0 the distinction should make little difference.
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we find using (18) that

Var(δ j,stand) =
N2

N − 1

[
1

n0(n1)

]
, (27)

and σX j,Xk in (24) is ρX j,Xk , the correlation of X j and Xk. Then

Var(δ)UW,stand) =
N2

N − 1
1

n0(n1)

p + 2
p∑

j<k

ρX j,Xk

 . (28)

(3). Finally, for the third claim in the theorem, note that under an appropriate central limit theorem
(Erdős and Rényi 1959, Hájek 1960, Höglund 1978), the sampling distribution of each δ j and thus of δ
is asymptotically normal. It will be approximately normal in a finite study group if n0 and n1 are large
or even moderately sized, and even more so if the variables X j themselves have an approximately normal
distribution. That each δ j is a difference of averages also helps foster approximate normality, even in small
samples. In sum, δ ∼̇ N(0, Var(δ)), where here ∼̇ means “approximately distributed as,” which can aid
hypothesis testing when justified.

4.3.2 Hotelling’s T 2 statistic, δUW , and the F-distribution

The distribution of δUW , the unweighted sum of covariate differences of means, is closely related to
Hotelling’s (1931) two-sample T 2 statistic; indeed, the latter simply normalizes the former by the in-
verse of the pooled sample covariance matrices, producing possible efficiency gains, as we show in this
subsection. Hotelling’s T 2 can in turn readily be related to the F-distribution used in some multivariate
(unweighted) covariate balance tests.

First, define δ2
UW =

∑p
j=1 δ

2
j , where as in the text each δ j is XT

j − XC
j , i.e. the difference of means on

covariate j. In vector notation, this can be written as

δ2
UW = (XT − XC)

′

(XT − XC),

where e.g. XT is the p×1 vector of means of the p covariates in the treatment group. As random variables,
the covariate means (and their difference) may be approximately normally distributed in finite samples,
and they are asymptotically normal by an appropriate central limit theorem (see point (3) in the proof of
Theorem A.1). Thus, the sum of squared differences, δ2

UW , is approximately χ2.
Hotelling’s T 2, by contrast, can be written in our context as

t2 =
n0n1

N
(XT − XC)′Σ̂−1(XT − XC),

where Σ̂ is the p×p pooling sample variance-covariance matrix. Note that pooling across the treatment and
control groups makes sense here: Xi is the same whether i is assigned to the treatment or control group,
so the sample means for each group are drawn from the same distribution. Thus, t2 is essentially δ2

UW ,
scaled by a constant of proportionality and the inverse of the pooled variance-covariance matrix, which
may make it more efficient. Hotelling’s statistic is distributed as a T 2 random variable with parameter p
and N − 2 degrees of freedom.
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Finally,
(N − p − 1)

(N − 2)p
t2 ∼ F(p,N−p−1;t2).

Unweighted statistics such as δUW or t2, like an F-test after regression of treatment assignment on co-
variates, may perform somewhat differently, as our simulations in the paper suggest, but they are all
unresponsive to the level or distribution of covariate prognosis.

4.3.3 Conditional distribution of δPWLR

We can now relate the conditional distribution of δPWLR—also a random variable, with randomness due to
treatment assignment—to the unweighted sum:

Theorem A.2 (Distribution of the prognosis-weighted sum of covariate differences of means, δPWLR).
When treatment is randomly assigned, (1) plim(δPWLR) = 0. Also, (2) the large-sample variance of δPWLR,
conditional on the weights, is proportional to Var(δUW) as given in Theorem A.1.

Proof. Consider the distribution of
δPWLR = (XT − XC)

′

β̂C,

that is,

Ŷ(0)T − Y(0)C,

the difference between the fitted average potential outcomes under control in the treatment and control
groups.

(1). By Slutksy’s theorem, it is immediate that plim(δPWLR) = plim(XT − XC)
′

β̂C = plim(XT −

XC)
′

plim(β̂C) = 0 when treatment is randomly assigned; in that case, the covariate means in the treat-
ment and control groups are equal in expectation.

(2). As for the conditional variance of δPWLR,

Var(δPWLR |̂β) = Var(
p∑

j=1

β̂C
j δ j |̂β)

=

p∑
j=1

Var(β̂C
j δ j |̂β) + 2

p∑
j<k

Cov(β̂C
j δ j, β̂k

C
δk |̂β)

=

p∑
j=1

β̂C
j

2
Var(δ j) + 2

p∑
j<k

β̂C
j β̂

C
k Cov(δ j, δk)

=

p∑
j=1

β̂C
j

2 1
N − 1

N2σ2
X j

n0(n1)

 + 2
p∑

j<k

β̂C
j β̂

C
k

σX j,Xk

N − 1
[

N2

n1(n0)
],

where in the final line we use (17) and (24). When the elements of X are standardized, we have

Var(δRW,stand |̂β) =
p∑

j=1

β̂C
j

2 1
N − 1

[
N2

n0(n1)

]
+ 2

p∑
j<k

β̂C
j β̂

C
k

ρX j,Xk

N − 1
[

N2

n1(n0)
] (29)
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In sum, the conditional variance of δPWLR is proportional to the variance of δUW , with constants of pro-
portionality equal to the regression weights. With standardized regressions, terms for which the fitted
regression coefficients approach zero will vanish.

Theorem A.2 gives a large-sample result on the conditional distribution of our test statistic. To conduct
hypothesis tests, we could form a t- or z-test based on the ratio of δPWLR to the square root of an estimator
of the conditional variance derived in the proof of theorem, e.g., equation (29). However, such a large-
sample approximation may not be reliable in small studies.21 Moreover, the conditional distribution does
not readily account for randomness in the weights (that is, the regression coefficients fit in the randomly
assigned control group). We therefore instead recommend the bootstrap hypothesis test we develop in
section 4.4.

4.3.4 Testing as-if random with δPWLR and sufficient covariates

When X is sufficient, the non-independence of treatment assignment and a consistent estimator of the
conditional expectation of potential outcomes implies the non-independence of treatment assignment and
potential outcomes. In other words, we can use a consistent estimator of the finite-population regression
to test as-if random.

Let Yi(0)lr = Xiβ be the finite-population regression (with “lr” for linear regression), and Ŷi(0)lr =

XC
i
′

β̂C be the regression of outcomes on covariates in the control group, i.e. the sample version of this
regression, where “C” stands for the control group.

Then we have the following theorem.

Theorem A.2 (Observable Implication of As-If Randomization). Suppose that X is sufficient for Y(0),
Yi(0)lr = Xiβ, and Ŷ(0)lr is a consistent estimator for Yi(0)lr. Then: Z ⊥̸⊥ Ŷ(0)lr =⇒ Z ⊥̸⊥ Y(0).

Proof. Consider the estimator Ŷ(Z)|X =
∑

j β̂
Z
j X j, which is the sample analogue of Y(Z)lr, as defined in

equation (2) in the text for Y(0); randomness in β̂Z
j is induced by treatment assignment. Define, for any

U , X, a linear estimator ̂Y(Z)|X,U such as β̂Z
j X j + γ̂U.

By sufficiency, ∀U , X,Y(Z) ⊥⊥ U |X. Also, by the Frisch-Waugh-Lovell theorem (or “regression
anatomy,” Angrist and Pischke 2009: 3.1.2), the coefficient on U in the sample regression is

γ̂ =
Ĉov(Y(0), ̂̃U)

V̂ar(̂̃U)
, (30)

where ̂̃U is the residual from the sample regression of U on X and we usê to denote the sample estimator.
By consistency of Ŷ(Z) (from Theorem A.2) and sufficiency, E(̂γ)→ 0, and

lim
n→∞

P
({
|Ŷ(Z)|X − ̂Y(Z)|X,U | > 0

}
> ϵ
)
→ 0

21Inter alia, there may be ratio-estimator bias (the sample regression estimator can be viewed as a ratio of random variables,
since covariate values in the control group are random).
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for arbitrarily small ϵ. Take U to be XC, the complement of X. Then we have

Z ⊥̸⊥ Ŷ(Z)|X =⇒

Z ⊥̸⊥ Ŷ(Z)|X, XC =⇒

Z ⊥̸⊥ Ŷ(Z) =⇒
Z ⊥̸⊥ Y(Z).

The theorem provides an empirical corollary to Theorem 1: when X is sufficient, we can validly use
the empirical prognosis-weighted statistic to test as-if random.

Note also that δPWLR is just Ŷ(0)lr in the treatment group minus Ŷ(0)lr in the control group, and both
terms are consistent for Xiβ under as-if random: see the proof of claim (1) in Theorem A.1.

4.4 A bootstrapped prognosis-weighted test of as-if random
For hypothesis testing, we propose a resampling (a.k.a. bootstrap) technique which allows comparison of
the observed value of a test statistic to its exact randomization distribution.22

The procedure uses draws from the observed data to approximate the null sampling distribution of
δPW , i.e., its distribution when as-if random holds. Thus, for δPWLR, we draw two independent samples of
potential outcomes from the control group; fit the prognosis regression in one of them; calculate a bootstrap
test statistic, i.e., the prognosis-weighted difference of means; and repeat the bootstrap B times in order
to compare an observed test statistic to its randomization distribution. For non-linear fitting methods, the
procedure is parallel but uses the chosen non-linear regression or machine learning procedure in place of
linear regression.

The validity of this procedure rests on two key features. First, the expectation of the covariate differ-
ence of means e.g. in δPWLR is zero, as it is when treatment assignment is randomized. Thus, we compare
the expected values of averages of two independent samples drawn from the same finite bootstrap popula-
tion.23 Second, the procedure allows in a natural way for the statistical dependence between the random
variable β̂C—as realized in the control group—and XC, with treatment assignment as the only source of
stochastic variation. Note that the bootstrap uses only values of Y(0) from the control group to simulate
the distribution of prognosis weights.

This bootstrap procedure can be adapted to accommodate a wide range of designs, for instance, those
with clustered or blocked assignment. We also note that using control group values to estimate the weights
does not induce a bias from overfitting, a problem that can arise when study outcomes are also used for
estimating average treatment effects (Rubin 2007; Hansen 2008; Liao et al. 2023).

The resampling test works as follows, in a study with one treatment and one control group:

1. Draw a sample with replacement from the observed control group and regress outcomes on covari-
ates. Return the coefficient vector β̂C∗ and the sample mean of the covariates, XC∗.

22On randomization tests, see Fisher (1935); also inter alia Caughey et al. (2017).
23The observed treatment and control group means are dependent and the samples are drawn without replacement. However,

Xi is the same whether unit i is assigned to treatment or control. Per Neyman (1923), it is thus as if the two samples were
drawn independently with replacement (see Freedman et al. 2007: A32-A34; Samii and Aronow 2012, Theorem 2; Gerber
and Green 2012: 57; or Dunning 2012: 193).

27



2. Take another independent sample with replacement, also from the observed control group, and cal-
culate the sample mean of the covariates, XT∗.

3. Calculate a simulated δ∗bPW = (XT∗ − XC∗)′β̂C∗.

4. Repeat steps (1)-(3) B times (B = 500 in our default).

5. Calculate a two-sided randomization-based p-value as

p∗ =
1
B

B∑
b=1

I(|δ∗bPWLR| ≥ |δ
obs
PWLR|), (31)

where I is an indicator function that equals 1 if its argument is true and 0 otherwise, and δobs
PWLR is

the observed value of the prognosis-weighted test statistic. Reject the null if, e.g., p∗ < 0.05.

4.5 Machine-learning methods for fitting δPW

The fitted value approach also leads naturally to alternative, more flexible nonlinear techniques. The
predicted potential outcomes in δPW in equation (3) can be formed by a host of methods.

In subsection ?? and Online Appendix Section 7, we explore the performance of two main alternatives.
First, we extend the linear regression-based approach of subsection ?? to include polynomial terms and a
full set of covariate interactions. Thus, a fully “saturated” regression produces the fitted values.

Second, we extend our software pwtest to allow for a host of more flexible methods, including
machine learning (ML) techniques. The options include, among others, generalized linear models with
LASSO, Bayesian Additive Regression Trees (BART), random forests, and gradient boosted trees. The
strategy is the same across all methods and follows the following steps:

1. Fit Ŷ(0)C on covariate set XC (i.e., subsetting to control units), using a given method;

2. With the resulting fit, obtain ŶT (0) using treatement-group covariate values XT ; and

3. Calculate the observed δPW as defined by equation (3).

The software bootstraps a hypothesis test and associated p-values using the approach described in subsec-
tion 4.4 and returns diagnostic measures of prognosis.

Our observed δPW statistic is defined as

δPW = Ŷ(0)T − Y(0)C (32)

or the difference between the fitted average potential outcomes under control in the treatment and
control groups, where fitted values of potential outcomes under control for treatment units can be obtained
by fitting a procedure M on the units assigned to treatment, such that

Ŷ(0)T =M (XT )

Under the linear regression approach we have considered in our test of as-if random described in
Section 4.3.3, where the test statistic is δPWLR, we define M (XT ) = XT β̂C. In this section, we describe our
approach under alternative definitions of M .
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Our approach can draw from a variety of more flexible methods for fitting ŶT , including generalized
linear models with LASSO, random forests, Bayesian Additive Regression Trees (BART), gradient boost-
ing frameworks, and others.

The standard estimation strategy for δPW is the same across all methods and follows the following
steps:

Step 1 Train a model M to fit YC(0) on covariate set XC. This model fitting step subsets to observed Y(0)
(i.e., control units). In machine learning methods, this subset of the data will consist of the training
set.

Step 2 With the resulting model, obtain ŶT (0) for the subset of the data assigned to treatment using observed
covariate values XT (i.e. the test set).

Step 3 Calculate the observed δPW as defined by equation (32).

In subsection ??, we use simulations to assess the performance of the saturated regression and two
widely used ML methods—gradient boosted trees and random forests (????)—as well as the performance
of a procedure for choosing the ”best”-fitting model that we discuss next.

4.5.1 Hypothesis testing with δPWML

Step 4 Draw a sample with replacement from the observed control group. Fit M on this sample to obtain
a ŶC∗(0).

Step 5 Take another independent sample with replacement, also from the observed control group. Fit M

on this bootstrap sample to obtain ŶT∗(0).

Step 6 Calculate δ∗PW =ŶT∗(0) − ŶC∗(0)

Step 7 Repeat Steps (4)-(6) B times (B = 500 in our default).

Step 8 Calculate a two-sided randomization-based p-value as

p∗ =
1
B

B∑
b=1

I(|δ∗bPW | ≥ |δ
obs
PW |), (33)

where I is an indicator function that equals 1 if its argument is true and 0 otherwise, and δobs
PW is the

observed value of the prognosis-weighted test statistic. Reject the null if, e.g., p∗ < 0.05.

4.5.2 Cross-validation and choice of methods

Our pwtest function also allows for an automated selection of the method with the best predictive per-
formance. In this case, the method that predicts Y(0) most accurately from covariates in the control (or
training) group is selected for use in the resulting test procedure. For the ML methods, this is also based
on a k-fold cross-validation process for selection of hyperparameters using control group units only. To
select an appropriate fitting procedure in a data-driven way, the software picks the estimation method with
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the highest R2 on the task Y(0)|X in the control group. We discuss further details in subsections 4.4 and
7.5 of the Appendix.

Ideally, the procedure for selecting the fitting procedure should be pre-specified in advance of testing.
However, we also note that for reasons described in subsection ??—especially simplicity and interpretabil-
ity of the weights—there may often be a rationale for using the baseline linear approach (the default in
pwtest), even if non-linear methods can provide a slight improvement in power, and we recommend also
reporting tests using this simple approach. We return to discussion of this point in connection with the
simulation results in subsection ??.

5 Prognosis-weighted tests in regression-discontinuity designs
In this section, we propose tests for two identification conditions in RD designs: as-if random and conti-
nuity of potential outcomes.

The approach for continuity of potential outcomes, as discussed in section 4.2 of the paper, involves
testing for equality of the intercepts of two prognosis-weighted regressions, one on each side of the assign-
ment threshold. Here, we give more details on that procedure and describe two approaches to statistical
inference and hypothesis testing.

As we also discuss, there are settings in which it makes sense to test the stronger assumption of as-if
random; we discuss prognosis-weighted tests of as-if random in subsection 5.2. The approach for as-if
random is similar to that developed in section 4.1 in the paper, including the bootstrap in section 4.1.1.
However, it requires specifying a procedure for bandwidth selection (i.e., the size of the window around
the key RD threshold that will define the study group for testing).

5.1 Testing continuity of potential outcomes in RD designs
Analysts have rightly noted that in many RD designs, as-if random should be replaced with the (weaker)
assumption that the regression functions relating potential outcomes to the forcing variable (a.k.a. the
running variable or “score”) are continuous at the threshold determining treatment assignment (Calonico
et al. 2014; De la Cuesta and Imai 2016). This may especially be so when the slope of the regression
function relating potential outcomes to the forcing variable is not flat (see Dunning 2012 Chapters 3 and
5; Cattaneo et al. 2015; Sekhon and Titiunik 2017). When the forcing variable has a strong relationship to
the response variable, we might expect as-if random to fail, i.e., we may expect to find average differences
in potential outcome even in narrow bandwidths around the threshold determining treatment assignment.
However, functions of average potential outcomes may nonetheless be continuous at the threshold.

Our example of close-election designs discussed in section 5.1 of the text provides one illustration. At
least in the U.S. House context, party vote share at time t (the running variable in many studies) appears
strongly related to party vote share or incumbency at time t + 1 (the outcome). (Per our discussion of the
weak prognosis of lagged incumbency generally, this is not the case in all election contexts). Thus, because
the slope of the potential outcome regression function is increasing, we may expect average differences
of potential outcomes in narrow bandwidths on each side of the threshold. However, those functions may
be continuous at the threshold. In the U.S. House, there are substantial differences in the average values
of covariates related to potential outcomes in narrow bandwidths around the assignment threshold, yet,
consistent with De la Cuesta and Imai (2016), our evidence from prognosis-weighted tests is consistent
with continuity of potential outcomes at the threshold.
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In this case, the key condition to test is not as-if random (Assumption 1) but rather:

Assumption 2. (Continuity of Potential Outcomes—RD Designs) Potential outcomes regression functions
are continuous at the threshold determining treatment assignment.

Continuity implies that the limits of the regression functions are the same approaching from above and
below the threshold. This motivates the standard approach of testing for the equality of intercepts of two
regressions, fit above and below the threshold value of the running covariate.

However, researchers typically test for the continuity not of potential outcomes—but of covariates.
Thus, they regress each pre-treatment covariate separately on the forcing variable, above and below the
RD threshold, and conduct a test for equality of the intercepts at the threshold.

Unfortunately, such tests for the continuity of covariates may not be informative about the continuity
of potential outcomes. Just as with tests of as-if random, researchers are subject to false negatives and
false positives due to irrelevant covariates (section 3.2). Covariates may be continuous at the threshold
and yet potential outcomes may not be; or vice versa. The standard approach also raises the problems of
indeterminacy and multiple testing (De la Cuesta and Imai 2016), as in covariate-by-covariate tests of as-if
random.

Fortunately, we can readily form a prognosis-weighted test statistic that is appropriate for testing conti-
nuity of potential outcomes in RD designs. Following our previous approach of using only the prognostic
part of the covariates, we first project the outcome variable on covariates on the control group side of the
RD threshold. Then, we fit regressions—not of covariates, as in standard practice, but of fitted potential
outcomes—on the running variable, on each side of the threshold.

In the next sub-section, we provide more details on construction of the test statistic described in the
text, while the following sub-section turns to statistical inference and hypothesis testing.

5.1.1 Test statistic: the prognosis-weighted difference of intercepts

Continuity implies that the limits of these functions approaching the threshold from above and below are
the same. For Y(0), for example,

lim
r↓c

E[Yi(0)|Ri = r] = lim
r↑c

E[Yi(0)|Ri = r]. (34)

Here, Ri is the value of the forcing variable, and c is the threshold value of Ri at which treatment Zi switches
“on” or “off”. The expectations operators refer to the expected value for a randomly sampled unit with
Ri = r. Informally, the “intercepts” of two regressions of potential outcomes on the forcing variable—one
above and another below the discontinuity—must be the same.

However, researchers typically test for the continuity not of Y(0)—as in equation (34)—but of covari-
ates. Thus, they regress each placebo or pre-treatment covariate separately on the forcing variable, above
and below the RD threshold, and conduct a test for equality of the intercepts at the threshold. Yet, such
tests for the continuity of covariates may not be informative about the continuity of potential outcomes.
Just as with tests of as-if random, researchers are subject to false negatives and false positives due to irrel-
evant covariates (section 3.2). Covariates may be continuous at the threshold and yet potential outcomes
may not be, or vice versa.

Fortunately, we can readily form a prognosis-weighted test statistic that is appropriate for testing conti-
nuity of potential outcomes in RD designs. Following our previous approach of using only the prognostic
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part of the covariates, let Ŷ(0) = X β̂C be the fitted value from a regression of the outcome on covariates
on the control group side of the RD threshold, where Y(0) is observed. Now, we fit regressions—not of
covariates, as in standard practice, but of fitted potential outcomes—on the running variable Ri. Thus the
regressions are as follows. First,

(α̂0, β̂0) = arg min
α0, β0

n∑
i=1

I{c0 ≤ Ri ≤ c}{Ŷi(0) − α0 − β0(Ri − c)}2K
(Ri − c

h

)
(35)

is the intercept and slope from a regression of Ŷ(0) on the forcing variable to the right of the threshold
(centered at the threshold). Here, Ri is the forcing variable, c is its value at the assignment threshold, and
c0 is the value that defines the edge of the control-group bandwidth. Similarly,

(α̂1, β̂1) = arg min
α1, β1

n∑
i=1

I{c < Ri ≤ c1}{Ŷi(0) − α1 − β1(Ri − c)}2K
(Ri − c

h

)
(36)

is the intercept and slope from the regression on the treatment-group side, including units up to c1.24 For
clarity, in (35) and (36), we separate the fitted intercepts α̂0 and α̂1 from β̂0 and β̂1, the fitted coefficients
on the centered value of the forcing variable, Ri − c. Note, however, that the latter are distinct from the
fitted coefficients of the regression of Y(0) on covariates X. These, which we label β̂C as before, are fit in
the prognosis regression in the previous step.

Conceptually, it is as if we regressed each pre-treatment covariate on the forcing variable in windows
below and above the RD threshold c, as in standard practice (see subsection ??. However, we combine the
intercepts of these separate regressions into one omnibus prognosis-weighted test statistic,

δRD
PW ≡ α̂1 − α̂0, (37)

where α̂0 and α̂1 are the intercepts at the assignment threshold of the regressions of Ŷ(0) on the forcing
variable, on the control-group and treatment-group sides respectively. We can then test the null hypothesis
that the expectation of this difference is zero against the alternative of a non-zero difference, or we can flip
the null and alternative, as in equivalence testing.

This test of continuity of potential outcomes—as with the test of as-if random—projects out irrelevant
covariates and thus bases assessment on the most informative covariates.

5.1.2 A prognosis-weighted sum of intercepts

As we noted in subsection 5.1.1, to form the prognosis-weighted difference of intercepts, it is conceptually
as if

• we regressed each pre-treatment covariate on the forcing variable in windows below and above the
RD threshold c, as in standard practice; and then

• combined the separate intercepts from these regressions into a single prognosis-weighted difference
of intercepts.

24As recommended by Calonico et al. (2014) and Cattaneo et al. (2020), equations (35) and (36) are triangular kernel-weighted
local linear regressions; K(·) may be a function such as the triangular kernel, K(u) = (1−|u|)·I{|u| < 1}. The bandwidth [c0, c1]
can be chosen by the algorithm of Imbens and Kalyanaraman (2012); this is the default option in our R package pwtest.
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Indeed, this is true mathematically, as long as the running variable is scaled so that the running covari-
ate is centered at the assignment threshold c. Note first that solving equation (35) gives the least-squares
solution

α̂0 = Ŷi(0) − β̂0(Ri − c)
= Xiβ̂

C − β̂0(Ri − c),

where in the second line we plug in the fitted value Ŷi(0) = Xβ̂C. Taking averages over N, we have∑
α̂0

N
=

∑
X̂iβ̂

C

N
−

∑
β̂0(Ri − c)

N
= Xβ̂C − β̂0(Ri − c)

Thus, when Ri is centered at the assignment threshold so that Ri = c,

α̂o = Xβ̂C. (38)

Now, define the “prognosis-weighted sum of intercepts” as

α̂PW =

p∑
k=1

α̂kβ̂
C
k , (39)

where each α̂k is the intercept from the regression of the kth covariate on the forcing variable Ri. That is,
teh prognosis-weighted sum is the sum of the intercepts from each of the separate covariate-by-covariate
regressions, weighted by the covariate’s coefficient in the prognosis regression. Thus,

α̂k = Xi,k − bk(Ri − c),

where bk is the coefficient of regression of Xk on Ri − c. If Ri is centered at c, then taking averages again
over N we have

α̂k = Xk. (40)

So then plugging (40) into (39) and using (38), we have

α̂PW =

p∑
k=1

Xkβ̂
C
k

= α̂0.

A similar argument holds for α̂1, the solution to equation (36). Thus, the test statistic δRD
PW in (37) is the dif-

ference of the prognosis-weighted sum of the intercepts from the treatment and control group regressions.

5.1.3 Further details on prognosis-weighted difference of intercepts

In sum, we adapt our procedure as follows to test for continuity of potential outcomes as follows.
First we fit a prognosis regression—the projection of potential outcomes under control onto covariates—

on the control group side of the threshold. We then test the continuity of potential outcomes under control
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using fitted values from this regression on both sides of the threshold; in our default approach, we compare
the intercepts of kernel-weighted local-linear regressions above and below the threshold. This allows us
to form the test statistic δRD

PWLR, i.e., the difference of fitted intercepts in equation (9) in the text.
The test statistic is constructed in the following two steps:

1. Prognosis regression. First, estimate the vector β by regressing potential outcomes under control
on the matrix of pre-treatment covariates, on the control-group side of the RD threshold. Covariates
and the outcome may be standardized before running the prognosis regression. This allows us to
form the fitted values Ŷ(0) = Xβ̂C, where β̂C is the coefficient from the prognosis regression.

In our default approach, we use all of the units on the control group side of the threshold (i.e., over
the support of the running variable on this side of the threshold) to fit the prognosis regression. It is
not clear, especially for covariates that are unrelated to the running variable, that units closer to the
RD threshold as defined by their values of the running variable will allow us a better approximation
of the finite-population relationship between Y(0) and X (note that this is the goal—we are not
concerned here with the relationship between Y(0) and the running covariate Ri). Ceteris paribus,
use of all observed Y(0) values also reduces statistical uncertainty in the estimate of β, the finite-
population regression coefficient. However, users can alter this option by specifying manually a
bandwidth for the prognosis regression using our R package. In practice, the estimate β̂C from the
prognosis regression may not be very sensitive to the bandwidth one chooses. It is critical, however,
that only units on the control group side of the threshold are used in estimating the finite-population
relationship between Y(0) and β—since on the other side of the threshold we observe Y(1).

2. Prognosis-weighted difference of intercepts. Now, we fit regressions to estimate the difference of
intercepts of the potential outcomes regression function relating Y(0) to the forcing variable Ri. The
regressions (mirroring e.g. De la Cuesta and Imai 2016) are as follows. First,

(α̂0, β̂0) = arg min
α0, β0

n∑
i=1

I{c0 ≤ Ri ≤ c}{Ŷi(0) − α0 − β0(Ri − c)}2K
(Ri − c

h

)
(41)

is the intercept and slope from a regression of Ŷ(0) on the forcing variable to the right of the threshold
(centered at the threshold). Here, Ri is the forcing variable, c is its value at the assignment threshold,
and c0 is the value that defines the edge of the control-group bandwidth. Similarly,

(α̂1, β̂1) = arg min
α1, β1

n∑
i=1

I{c < Ri ≤ c1}{Ŷi(0) − α1 − β1(Ri − c)}2K
(Ri − c

h

)
(42)

is the intercept and slope from the regression on the treatment-group side, including units up to c1.
As recommended by Calonico et al. (2014) and Cattaneo et al. (2020), equations (35) and (36) are
triangular kernel-weighted local linear regressions; K(·) may be a function such as the triangular
kernel, K(u) = (1− |u|) · I{|u| < 1}. The bandwidth [c0, c1] can be chosen by the algorithm of Imbens
and Kalyanaraman (2012); this is the default option in our R package pwtest.

For clarity, in (35) and (36), we separate the fitted intercepts α̂0 and α̂1 from β̂0 and β̂1, the fitted
coefficients on the centered value of the forcing variable, Ri − c. Note, however, that the latter are
distinct from the fitted coefficients of the regression of Y(0) on covariates X. These, which we label
β̂C as before, are fit in the prognosis regression in the previous step.
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Our key test statistic is the difference of prognosis-weighted intercepts of regressions above and
below the assignment threshold, i.e., as in text,

δRD
PWLR = α̂1 − α̂0. (43)

Here, α̂1 and α̂0 are Ŷ(0)|Ri = c, i.e., the predicted potential outcomes under control at the threshold
value at which treatment assignment flips from “off” to “on,” conditional on the covariates to the
right and to the left of the threshold, respectively. Since we do not observe Y(0) on one side of
the threshold determining treatment assignment, we take β̂C from the prognosis regression in the
first step (using observations from the control-group side of the threshold). However, the regres-
sion on the treatment group side of the threshold uses the treatment group values of X to form the
corresponding Ŷi(0) = Xβ̂C as in equation (13) in the text.

In sum, we regress the fitted Ŷ(0) on the running covariate on each side of the threshold, using a
kernel-weighted approach to prioritize units closest to the threshold to fit the intercepts. Conceptu-
ally, it is as if we were separately regressing each pre-treatment covariate on the forcing variable in
the windows Ri ∈ [c0, c] and Ri ∈ [c, c1] below and above the RD threshold c, as in standard prac-
tice, but we then combine the intercepts of these separate regression lines into prognosis-weighted
intercepts from each side of the RD threshold.

One can readily adapt the approach analogously to test the continuity of Y(1), though again, in some
applications X may be most prognostic for Y(0) (e.g., when covariates include a lagged outcome).

Our R package inherits the default options for this kernel-weighted local-linear regression from
the rdrobust package of Calonico et al. (2015). There are three main elements: specification
of the bandwidth for the local-linear regression; the kernel function; and the polynomial order of
the regression. For the bandwidth, our default uses the MSE-optimal bandwidth of Imbens and
Kalyanaraman (2012), symmetric on both sides of the threshold, as in rdrobust; here, the optimal
bandwidth is selected for the regression of Ŷ(0) on Ri. (Bandwidth selection occurs within the
rdrobust function, also in the rdrobust package, which is a dependency in our package. However,
the bandwidth selection function rdbwselect of Calonico et al. (2015) can also be called directly).
The bandwidth can also be specified manually or chosen using other procedures such as cross-
validation available in rdrobust. Next, for the kernel, our default uses the triangular kernel noted
in the text, but users can specify e.g. a uniform kernel. Finally, the default option uses a polynomial
of order 1, i.e., a local-linear regression. All of these default choices can be altered using options
inherited from rdrobust. For discussion of some of the theory of the kernel-weighted local-linear
regressions, see Calonico et al. (2014) and also Cattaneo et al. 2020, chapter 4.

For comparison in our simulations and also to allow researchers the flexibility to consider an un-
weighted version of the test statistic in RD designs, our pwtest also reports a statistic similar to δUW

in tests of as-if random. The test also returns the unweighted sum of the difference of intercepts, es-
timated separately for each covariate with kernel-weighted local-linear regressions using MSE-optimal
bandwidths.

5.1.4 Statistical inference and hypothesis testing

Statistical inference and hypothesis testing is tricky in RD designs—perhaps most fundamentally because
it is not always clear what chance process in fact accounts for random variation in the estimators (Bueno
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et al. 2014, Cattaneo et al. 2015). In the case of our prognosis-weighted test for continuity of potential
outcomes, an additional difficulty is that statistical inference and hypothesis tests must account for random
variation not just in estimation of the intercepts of regression functions but also in the prognosis weights.
For standard errors, researchers often use model-based solutions or large-sample approximations. Sub-
stantial theory on the estimation of standard errors in RD designs has been developed recently; see e.g.
Calonico et al. (2014), Calonico et al. (2015), Cattaneo et al. (2015), Cattaneo et al. (2020).

In light of this, we take two complementary approaches to testing, both available in our R package
pwtest.

1. First, we export conventional and bias-corrected standard errors from the rdrobust package of
Calonico et al. (2015), which users can alternately use for hypothesis testing using normality ap-
proximations from large-sample results. This is our default approach. We use it for the p-values
reported in Table 1 of the paper (for tests of continuity in RD studies).

2. Second, we also adapt our bootstrap (resampling-based) test in a way that accounts for different
sources of chance variation. The test mimics the random variation implied by estimation of β̂C

in the prognosis regression and generates bootstrap bandwidths, in which we estimate intercepts
for kernel-weighted local linear regressions. However—precisely because the source of chance
variation in RD designs can vary depending on the application, and because of other features of
the bootstrap we describe below—we encourage users to study the bootstrap carefully and ensure it
matches their application before modifying the default option.

We now discuss these two approaches in more detail.

Approach #1: standard errors and p-values from rddrobust
Our default approach uses estimated standard errors from the rddrobust function of Calonico et al.
(2015) to form a z-ratio and conduct a test of continuity of average potential outcomes. There are two el-
ements to the z-ratio. In the numerator is the observed difference of intercepts δRD,obs

PW . In the denominator
is an estimated standard error for this observed difference of intercepts exported from rddrobust. In the
function’s default, we use the conventional standard errors from rddrobust but users can instead use the
bias-corrected version (Cattaneo et al. 2020, Calonico et al. 2015). To invoke the default in our package
pwtest, users specify a test of continuity of potential outcomes in an RD design by setting rdd = TRUE.
They then set se type to “analytic” (or choose not to specify this option, since it is the default when rdd
= TRUE).

With a large-sample normality approximation for the difference of intercepts, the ratio of the estimate
(difference of intercepts) to the exported standard error for the difference can be referred to a z distribution.
Hence, our function estimates the p-value of δRS

PW from a two-tailed test, as follows:

p = 2 ∗ P(Z ≥ |z|) (44)

where P()̇ is a probability density function of a normally distributed statistic, z defined as z = δRD
PW
σ̂RD

PW
and

σ̂RD
PW is the conventional (or bias-corrected, as specified by the user in pwtest) standard error from a local

polynomial RD estimates exported from rdrobust (Calonico et al. 2015).
For further theory justifying this approach, see e.g. Calonico et al. (2014) and Cattaneo et al. (2020).
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Approach #2: Bootstrap hypothesis test
We also derive a resampling-based (bootstrap) test for δRD

PWLR.
It works as follows. Consider as a test statistic a particular δRD,obs

PWLR , i.e., the observed δRD
PWLR calculated

using equations (35)-(36) in section 4.2.1 above with a particular data set.
Then the hypothesis test assesses the statistical significance of δRD,obs

PWLR in the following steps:

1. Bootstrap samples. Suppose there are Nc units on the control group side of the threshold over
the support of the forcing variable Ri. For example, if treatment is operative at and above the RD
threshold Ri = c, Nc is the size of the set of units with Ri < c. Draw a sample of size Nc at random
with replacement from this population of units i : Ri < c (or i : Ri > c, if treatment is operative at
and below the threshold). This is the bootstrap control group.

Now, draw another independent sample from the control group units, here however of size Nt (the
number of units on the treatment group side of the threshold). This is the bootstrap treatment group.
The reason for sampling again from the control group is that we want to construct a null distribution
of Y(0)|Ri in both the treatment and control groups, and we observe potential outcomes under control
only in the control group.

2. Prognosis regression. Now, regress Y(0) on covariates in the sample of size Nc + Nt. Denote the
resulting bootstrap regression coefficient vector β̂C∗. In the bootstrap treatment group, replace the
value Ri − c for each sampled i with −(Ri − c), so that units sampled from below the threshold
(when the control group is below the threshold) become units above the threshold, and vice versa.
The idea is to “mirror” the absolute value of distance Ri − c of sampled units on each side the
threshold, so that those closer to the threshold remain closer to the threshold; in the triangular-
kernel weighted local-linear regression we use to fit the bootstrap intercepts in step 4, such units
will have a stronger influence on the estimates. Form Ŷi(0)

∗

= X
′

β̂C∗ for all sampled i (i.e. pooling
the bootstrap treatment and control groups). This is the bootstrap regression function for potential
outcomes under control.

3. Bootstrap bandwidths. Use a bandwidth selector to define the window for the local-linear regres-
sions. Our default uses the MSE-optimal bandwidth of Imbens and Kalyanaraman (2012), symmet-
ric on both sides of the threshold, just as in our calculation of the observed prognostic-weighted
difference of intercepts (see step 2 of section 4.2.1 above). Note that here, the bootstrap MSE-
optimal bandwidth is selected for the regression of Ŷ(0)

∗

on Ri, i.e., the regression of the bootstrap
predicted value on the forcing variable. (Users can alter this bandwidth manually by passing an
optional argument h to our pwtest function call, which passes it on to Calonico et al. (2015)’s
rdbwselect function).

This produces a bootstrap bandwidth [c∗0, c
∗
1], with c∗0 < c < c∗1. Note that the bandwidth sizes are

realized values of random variables, as they are functions of Ŷ(0)
∗

in the previous step. Let n∗0 be
the size of the set of sampled units i : Ri ∈ [c∗0, c) and correspondingly n∗1 is the size of the set
of units i : Ri ∈ [c, c∗1]; if treatment is operative at and above the threshold, these are control and
treatment-group units, respectively. (Conversely, if treatment is operative at and below the threshold,
switch the labels n∗1 and n∗0). The set of units within the bootstrap bandwidth [c∗0, c

∗
1] thus has size

n∗ = n∗0 + n∗1.
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4. Prognosis-weighted difference of intercepts. Now, conduct bootstrap regressions that mimic equa-
tions (12) and (13) in the text. For instance, if treatment is operative below the threshold, we have

(α̂0
∗, β̂0

∗

) = arg min
α0, β0

n∗∑
i=1

I{c∗0 ≤ Ri ≤ c}{Xi
′β̂C∗ − α0 − β0(Ri − c)}2K

(Ri − c
h

)
(45)

is the intercept and slope from a regression of Ŷ(0)∗ on the running covariate to the right of the
threshold (centered at the threshold). Similarly,

(α̂1
∗, β̂1

∗

) = arg min
α1, β1

n∗∑
i=1

I{c < Ri ≤ c∗1}{Xi
′β̂C∗ − α1 − β1(Ri − c)}2K

(Ri − c
h

)
(46)

is the intercept and slope from a regression of Ŷ(0)∗ on the running covariate to the right of the
threshold (centered at the threshold). This results in the bootstrap intercepts α̂0

∗ and α̂1
∗. For these

bootstrap regressions, use whatever options are specified for the placebo test regression using the
observed data—e.g., triangular kernel, polynomial of order 1, as in our default.

Putting together the two regressions allows to form a bootstrap placebo treatment effect estimator
δRD∗

PWLR = α̂1
∗
− α̂0

∗

5. Repeat steps (1)-(2) B times (we set B = 500 in our default).

6. We then calculate a two-sided randomization-based p-value as

p∗ =
1
B

B∑
b=1

1(|δRD∗
PW,b| ≥ |δ

RD,obs
PWLR |), (47)

where 1 is an indicator function that takes on the value of 1 if its argument is true and 0 otherwise.

Here δRD,obs
PWLR is the observed prognosis-weighted difference of intercepts and δRD∗

PW,b is the bth bootstrap
prognosis-weighted difference of intercepts. Reject the null if, say, p∗ < 0.05.

Thus, in this approach, we compare the absolute value of the observed value of the prognosis-
weighted difference of intercepts to its randomization distribution and reject the null hypothesis if
such an observed value would arise in fewer than 5% of randomizations under the null.

To use the bootstrap (resampling-based) hypothesis test for the continuity of average potential out-
comes, users first specify an RD design by setting rdd = TRUE) in pwtest). They then set se type to
“bootstrap.”

The bootstrap is useful in some contexts but we opt to use the rdrobust options as the default for
the following reasons. First, note that one feature of the bootstrap prognosis regression in step 2 is that
it imposes a particular functional form on the regression functions on each side of the threshold, because
the treatment group values of the centered running variable “mirror” those on the control group side.
That, since we form Ŷi(0)

∗

= X
′

β̂C∗ for all sampled i and a sampled unit used for the treatment ground
regression has only its Ri − c value altered (by changing its sign), the value of Ŷi(0)

∗

given X and β̂C for
a given i is the same whether in treatment and control. If the control-group regression is upward-sloping
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and the control group is to the left of the threshold, this will produce an “inverted V” shape to the fitted
potential outcomes regression function. Clearly, this introduces an assumption on the null distribution of
the function that is stronger than just continuity at the threshold—one reason we do not make the bootstrap
our default approach for testing the continuity of potential outcomes in RD designs.

However, we also note that this may be a feature as much as bug. We care mainly under this approach
that the function is continuous at the threshold; use of the kernel-weighted local-linear regression will give
maximal weights to units closest to the threshold, so the shape of the regression functions far from the
threshold may be less relevant. Moreover, this choice (or a similar one) appears unavoidable, since we
need to simulate a null distribution that gives continuity at the threshold and thus do not want to sample
X values from the observed treatment group (since in the data set at hand, continuity may not hold). We
thus here opt for this approach in the bootstrap. Nonetheless, researchers should bear in mind possible
implications of these features of the bootstrap in the context of their applications. Future research may
consider additional modifications to the options available currently in the package.

5.2 Testing as-if random in RD designs
Notwithstanding the primary role of continuity, in some regression-discontinuity (RD) designs, it may be
appropriate and desirable to test an assumption of as-if random assignment in a small neighborhood of
the threshold determining treatment assignment. This may especially be so when the regression functions
relating potential outcomes to the running covariate are flat (formally, the first derivative of the functions
are near zero; see e.g. Dunning 2012 Chapters 3 and 5).25 The shape of the potential outcome regression
functions can be assessed by, for instance, fitting flexible regressions on each side of the threshold deter-
mining treatment assignment. This effectively treats the RD design as if it might be a locally randomized
experiment (Lee 2008, Lee and Lemieux 2010; also Sekhon and Titiunik 2017).

The techniques we develop in sub-sections 4.1 and 4.2 of the paper readily apply to a test of as-if
random in an RD design. Within a given window, the relevant null hypothesis is H0 in (4) in the text (or
equivalence testing can be used). The control group consists of units whose score (running covariate) is
above or below the relevant threshold, depending on where treatment is operative, within the window.

The researcher then fits the standardized regression of outcomes on covariates in the control group to
estimate the vector β; and she calculates standardized differences of treatment and control group means
to form δPWLR in equation (7), i.e., the weighted sum of the differences of means. For hypothesis testing,
our resampling-based hypothesis test readily applies: when the RD design creates a locally randomized
experiment, treatment and control groups are exchangeable. Our bootstrap simulates the null distribution
of our test statistic to which we may compare the observed δPWLR to find p-values.

The major challenge is selection of the window or bandwidth within which as-if random is plausible
and should be tested. For example, Cattaneo et al. (2015) develop hypothesis tests for the RD design
based on randomization inference, relying on an assumption of ”as-if” random assignment within a narrow
window around the key threshold. For placebo and balance tests, the major difficulty is that there is some
apparent circularity: the bandwidth should be chosen so that as-if random holds, but the balance tests are
supposed to tell you if as-if random holds. Thus, it is not necessarily obvious how to choose the bandwidth
for purposes of testing.

25As-if random also motivates exact statistical tests based on randomization inference, including those proposed by Cattaneo
et al. (2015); these do not rely on large-sample approximations and thus may be especially helpful in small studies or when
data are sparse near the RD threshold.
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At least two approaches are plausible. One is the sequential testing procedure described by Cattaneo
et al. (2015), in which a researcher iteratively shrinks the window until she is unable to reject the null of
as-if random. Cattaneo et al. (2015) describe a randomization inference approach to testing. As they note
(see also Imai et al. 2008), this procedure is vulnerable to Type II error (failure to reject the null when
it is false) due to a small number of units with the window at which testing stops. Equivalence testing
could therefore be one alternative, using the same type of sequential test though potentially increasing the
window until the null of difference can be rejected. Note that whereas the sequential procedure described
by Cattaneo et al. (2015) does not describe how to adjudicate across tests with different pre-treatment
covariates (which may generate different maximum window sizes for different covariates), our omnibus
test using δPWLR will result in a single window, because it is based on a single regression.

A second, related possibility is to present results of tests of as-if random (i.e. tests of H0 in equation 2
in the text) for a large variety of bandwidths, using a graphical procedure like that described by Bueno and
Tuñón (2015). This approach can also be viewed as sequential, in the sense that one can identify visually
the largest region in which tests do not reject as-if random. However, it allows a stronger visual sense
of how test results hold across varied potential bandwidths. Again, the procedure could be subject to the
“balance test fallacy” (Imai et al. 2008), in that tests with smaller study groups are less well-powered to
reject the null and the study group size decreases as the bandwidth shrinks. Equivalence testing can address
this concern, but the need to specify an equivalence range remains a drawback of the approach (Hartman
and Hidalgo 2018). Instead, one could inspect the confidence intervals for different bandwidth sizes
and, for the smallest bandwidth in which as-if random is not rejected, consider the range of imbalances
contained within the interval, using either a traditional or equivalence testing approach.

The advantage of our test, with either approach to defining the bandwidth, is that as elsewhere, assess-
ment will be based on the most prognostic covariates and thus will allow a readier test of as-if random,
i.e., the independence of treatment assignment and potential outcomes.

5.2.1 The relationship between running variables and outcomes in sampled RD studies

Figure A1 shows the relationship between the outcome and running variables around the cutoff point for
all studies in our sample that employ a regression discontinuity design. The plots are generated using
the rdplot function in the rdrobust R package. We use the function’s default binning method, which
mimics variance evenly spaced using spacings estimators (see Calonico et al. 2014). The discontinuity
sample for each study is defined according to the bandwidths described in the previous section.

We specify the linear fit in order to examine whether the relationship between the outcome variable and
running variables is flat, which may suggest an argument for using the as-if random test in these settings.
Our prognosis-weighted test focuses on potential outcomes under control, so the control group side of the
threshold is most relevant for comparing the results of our tests to the shape of the potential outcomes
function. Note that the prognosis-weighted tests will be most specific and powerful when the prognosis
R2 is high. (If it is not, the test may not well approximate the potential outcomes under control depicted
graphically on the control group side of the threshold in the plots).

Notice that per Table 1 in the paper, we fail to reject as-if random with a prognosis-weighted test in
7 studies, while we reject it in 5 studies. The studies in which as-if random is not rejected are: (1) Hall
(2015); (2) Kim (2019); (3) Novaes (2018); (4) Hidalgo and Nichter (2016); (5) Fournaies and Hall (2014);
(6) Boas and Hidalgo (2011); (6) Eggers et al. (2015).

Conversely, the studies in which as-if random is rejected in the prognosis-weighted test are: (1)
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Figure A1: Outcome over binned running variable values within the RD bandwidth defined for each study
in the previous section. Red line shows the linear regression line on either side of the threshold.
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Caughey and Sekhon (2011); (2) Samii (2013); (3) Thomas (2018); (4) Kasnja (2015); (5) Holbein and
Hillygus (2016).

It is suggestive that visually, those RD studies where the regression function for potential outcomes
under control appears flattest are those in which we fail to reject as-if random: Eggers et al. (2015), Boas
and Hidalgo (2011), Founaies and Hall (2014), Hall (2015), Hidalgo and Nichter (2016), Kim (2019), and
Novaes (2018). An exception is Thomas (2018), where the slope appears flat but the prognosis-weighted
test rejects as-if random in Table 1. Conversely, the slopes are steeper in those studies prognosis-weighted
tests reject as-if random: see especially Caughey and Sekhon (2011), Samii (2013), and Holbein and
Hillygus (2016).

While not the main focus of our paper, future work should explore this empirical variation across
different types of RD studies in the relationship between the running covariate and potential outcome
regression functions.

6 Prognosis-weighted equivalence tests
Prognosis weighting can also be adapted to take advantage of equivalence tests (Hartman and Hidalgo
2018). Equivalence tests seek to address the “balance test fallacy” (Imai et al. 2008, Section 7), in par-
ticular, the problem that failing to reject the null of as-if random is not the same as accepting it. With
traditional tests, researchers may fail to reject simply because a study is small and underpowered.

The test works by switching the null and alternative hypotheses, so that under the null, the expected
means in the treatment and control group differ, while under the alternative they are approximately equal.
Equivalence tests are less likely to reject the null of difference as study size shrinks (Hartman and Hidalgo
2018, Figure SI-2), so acceptance (rejection of the absence) of as-if random is less likely to be an artifact
of low power.

Prognosis-weighted equivalence tests can provide an additional protection against the balance test
fallacy. In Online Appendix Section 5, we adapt the bootstrap procedure in subsection 4.4 for equivalence
testing. Here, the most informative covariates must be sufficiently balanced to reject the null hypothesis
of difference. Thus, as long as covariates are sufficiently jointly informative, prognosis weighting ensures
that we will not “accept” as-if random unless covariates related to potential outcomes are sufficiently
balanced.

It is important to note, however, that an equivalence test based on covariates with weak joint prognosis
is subject to similar limitations as traditional tests. Thus, we may reject the absence of as-if random
based on the balance of the most prognostic individual covariates, among the set at our disposal. Yet, if
measured covariates are not as a whole prognostic, there could readily be lurking prognostic variables that
are unobserved and imbalanced. Were we successfully to measure these prognostic covariates, we might
instead reject (fail to reject the absence of) as-if random.26

The way around this difficulty—as with traditional testing—is to ensure that we have measured co-
variates that are adequately jointly prognostic. The best advice may be thus to develop high-powered
tests—either traditional or equivalence-based—by leveraging jointly prognostic covariates and then prior-
itizing balance of the most informative individual covariates, as in our prognosis-weighted test.

26A further drawback is that researchers may find evidence for or against as-if random by varying the equivalence range.
Alternatives that lessen this discretion—for instance, use of the equivalence confidence interval (Hartman and Hidalgo
2018)—make equivalence testing more akin to traditional balance testing since in the latter, one can also readily examine
a (1 − α) ∗ 100% confidence interval to see what parameter values lie outside of it.
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6.1 A bootstrapped equivalence test p-value
Here, we adapt the bootstrap procedure in subsection 4.1.1. in the paper for equivalence testing.

The key idea in the equivalence test is that under the null hypothesis, the treatment and control groups
are drawn from different distributions—and thus, e.g., as-if random fails—whereas under the alternative,
they are drawn from approximately equivalent distributions. For as-if random, the null hypothesis is that
the assumption does not hold, while the alternative is that expected values of average potential outcomes
in the two groups are approximately equal:

H0equiv : E[Y(0)T − Y(0)C] , 0

HAequiv : E[Y(0)T − Y(0)C] ≈ 0. (48)

What constitutes approximate equality under the alternative is captured, in a “two one-sided test” (TOST),
by the “equivalence range,” i.e., the requirement that E[Y(0)T − Y(0)C] be contained in some interval
[ϵL, ϵU].

Adapting our notation in section 4.1.2 of the paper, we can state

H0equiv : E[
Y(0)T − Y(0)C

σ
] ≥ ϵU OR E[

Y(0)T − Y(0)C

σ
] ≤ ϵL (49)

versus

HAequiv : ϵL < E[
Y(0)T − Y(0)C

σ
] < ϵU .

where ϵL < 0 < ϵH and σ is the standard deviation of the potential outcomes under control in the finite
population. Thus, under the null, the standardized difference between the mean of the treatment and
control group distributions is greater than the positive upper bound ϵU or less than the negative lower
bound ϵL. Under the alternative, it lies within this range (Hartman and Hidalgo 2018: 1003).

The equivalence range may be chosen using substantive knowledge of what would constitute trivial
differences under the alternative (perhaps relative to a treatment effect size estimated in previous studies).
As a default, Hartman and Hidalgo (2018, 1006) recommend [ϵL, ϵH] = ±0.36σ.

We can devise a randomization inference test of the null hypothesis in (49) using the union of two one-
sided exact tests. Appealing to the intersection-union principle and following Hartman and Hidalgo (2018,
1009), we “conduct one-sided tests of the strict null hypothesis equal to the bounds of the equivalence
range, and the overall null hypothesis of nonequivalence can be rejected if both corresponding permutation
p-values are less than the level of the test.” Thus, we use the intersection of the p-values for the two one-
sided tests to define the rejection rule.

The key difference in the bootstrap routine—relative to the procedure given in subsection 4.1.1 of our
paper for a traditional test—is that we must draw the treatment group from a different distribution from
the control group. Thus, in one one-sided test, we draw the treatment group from a distribution centered
on the upper bound of the equivalence range. In the other one-side test, the distribution is centered on the
lower bound of the range. To accomplish this, we add or subtract (depending on whether we are doing
one-sided tests for ϵH or ϵL) a fixed value for each control group observation, before sampling the treatment
group. See Arboretti et al. (2018, 9-10) for a related algorithm that, however, is based on a permutation of
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treatment assignment. Permutation is not viable in our case, as explained in the text, since we do not wish
to mix values of Y(0) and Y(1), so we use a resampling-based randomization inference approach instead.

We can use the default fixed value of 0.36σ recommended by Hartman and Hidalgo (2018) to define
the bounds of the equivalence range. The resampling-based equivalence test works as follows.

One-sided test for ϵH:

1. Draw a sample with replacement from the observed control group and regress outcomes on covari-
ates. Return the coefficient vector β̂C∗ and the sample mean of the covariates, XC∗.

2. Now, add 0.36σ to the values for each control group observation. Then, sample treatment group
values independently from this modified bootstrap population to calculate XT∗ and the simulated
δ∗b,ϵUPW = (XT∗ − XC∗)′β̂C∗. (We use δ∗b,ϵHPW to denote that this is the bootstrap δPW when drawing from
a distribution centered on the upper boundary of the equivalence range, ϵH).

3. Repeat steps (1)-(2) B times (B = 500 in our default).

4. Calculate a one-sided randomization-based p-value as

p∗ϵU =
1
B

B∑
b=1

I(δ∗b,ϵUPWLR ≥ δ
obs
PWLR), (50)

where I is an indicator function that takes on the value of 1 if its argument is true and 0 otherwise.

Note that unlike in the two-sided traditional test given in section 4.1.1, here there are no absolute
value symbols around δ∗bPWLR and δobs

PWLR: we are conducting a one-sided test of the null that the
difference of expectations in (49) is greater than or equal to ϵU .

One-sided test for ϵL:

1. Draw a sample with replacement from the observed control group and regress outcomes on covari-
ates. Return the coefficient vector β̂C∗ and the sample mean of the covariates, XC∗.

2. Now, subtract 0.36σ from the values for each control group observation. Then, sample treat-
ment group values independently from this modified bootstrap population to calculate XT∗ and the
simulated δ∗b,ϵLPW = (XT∗ − XC∗)′β̂C∗. (We use δ∗b,ϵLPW to denote that this is the bootstrap δPW when
drawing from a distribution centered on the lower boundary of the equivalence range, ϵL).

3. Repeat steps (1)-(2) B times (B = 500 in our default).

4. Calculate a one-sided randomization-based p-value as

p∗ϵL =
1
B

B∑
b=1

I(δ∗b,ϵLPWLR ≤ δ
obs
PWLR). (51)

Rejection rule: For a 0.05-level test, reject the null of difference if both p∗ϵU AND p∗ϵL are less than
0.05.
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In words, we reject the absence of as-if random if the observed prognosis-weighted test statistic
is statistically less than the upper bound of the equivalence range and statistically greater than the
lower bound of the equivalence range.

7 Performance of prognosis-weighted tests: Simulations
In this section, we turn to simulations to assess the performance of our informativeness-weighted tests.
The structure of the simulations allows us to assess the power and specificity of the tests (i) when as-if
random is true, that is, prognostic covariates are balanced in expectation; and (ii) when it is false, that is,
treatment assignment depends on potential outcomes.

In a first set of simulations (subsection 7.2), measured covariates are jointly fully informative (i.e.,
sufficient) but vary in their individual prognosis. Thus, we assess how control over Type I and Type II
error (false positives and false negatives) of different types of tests responds to changes in the prognosis
of covariates that are either balanced or imbalanced in expectation.

In a second set (subsection 7.3), covariates are fully or partially uninformative, and we assess the per-
formance of tests as covariates become more prognostic. This structure also permits analysis of threshold
levels of covariate prognosis at which, in the simulations, performance becomes adequate, for instance, at
which the tests achieve specified statistical power (subsection 7.4).

In these first two sets of simulations, we compare the performance of the baseline prognosis-weighted
test based on linear regression to that of two unweighted multivariate test statistics: the unweighted sum of
standardized covariate differences of means (δUW in subsection 4.3.1) and Hotelling’s T 2. For simplicity,
here potential outcomes are also a linear function of covariates in the data-generating process.

In a final set of simulations (subsection 7.5), we then relax both the linearity of the data-generating
processes and of the prognosis-weighted tests. Thus, in subsection 7.5.1, potential outcomes are a poly-
nomial function of covariates, and we compare unweighted and baseline prognosis-weighted tests to a
regression-based test that allows polynomial functions of the covariates. In subsection 7.5.2, we further
allow covariate interactions both in the data-generating process and in the calculation of the test statistics.

Last, in subsection 7.5.3, we evaluate a range of further non-linear tests, including those based on
machine learning, in the presence of two ‘difficult’, highly non-linear data-generating processes. Here,
we also assess our tool for automated selection of a test procedure based on the best-fitting (regression
or machine-learning) technique for predicting Y(0)|X in the control group. Thus, we compare the perfor-
mance of the “winner” (using the contest and pick winner functions in our pwtest package) to that of
specified tests, including those based on linear and saturated linear (i.e., fully polynomial and interactive)
regressions.

In all the simulations, we compare the performance of tests given different expected patterns of imbal-
ance on prognostic and non-prognostic covariates. We measure performance as the proportion of rejections
of as-if random across realizations of a particular d.g.p and treatment assignment vector. When at least
one of the prognostic variables is imbalanced in expectation, treatment assignment depends on potential
outcomes so as-if random fails.27 In this case, the rejection rate measures statistical power. In contrast,
when as-if random holds, the proportion of rejections measures the false positive rate (Type I error).

Overall, our results illustrate how prognosis weighting can reduce both false negatives and false posi-
tives. The performance of the tests depends on the overall prognosis of measured covariates. In contrast,

27We implement a minor technical correction to ensure this holds; see our replication code.
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unweighted tests that do not use information on covariate prognosis sacrifice power and/or specificity.
Further gains in power can sometimes be achieved through the use of non-linear tests, but this depends not
only on the relationship between covariates and potential outcomes but also on patterns of imbalances, for
instances, whether main (linear) or secondary (non-linear) terms are relatively imbalanced. Overall, the
linear test performs quite well, especially when it is is expanded in saturated form to include polynomials
and covariate interactions. We return to the main takeaways from the simulations in subsection 7.6.

7.1 Steps in the simulations
Our simulations proceed in the following steps:

Step 1: (Data-generating process). We generate a dataset of N = 500 observations. The dataset has a treat-
ment assignment vector Z (with half the units assigned at random to treatment and half to control);
potential outcomes Y(1) and Y(0); and covariates Xp, with p = 1, 2 or sometimes p = 1, 2, 3. Covari-
ates are drawn from a multivariate normal distribution with mean 0 and standard deviation 1, and the
elements of the variance-covariance matrix governing the variables are defined in such a way that
the expected correlation between covariates and treatment assignment Z is determined by that co-
variate’s imbalance parameter; the expected correlation between covariates is 0. For data-generating
processes with interaction terms, the generation of imbalance and independence of covariates is
further described in subsection 7.5.2. Potential outcomes under control are formed as a linear or
non-linear function of covariates. In the first set of simulations, Y(0) = β1X1 + β2X2, where β1 and
β2 determine the prognosis of the corresponding covariate. Data-generating processes for potential
outcomes in other simulations are described further bleow. The average treatment effect is zero
throughout, i.e. Yi(0) = Y1(1) for all i, but this plays no role in the simulation. The data-generating
processes therefore allow us to set a priori values of covariate imbalance and prognosis, which will
be useful in Step 5 below.

Step 2: (Observed test statistics). Using the covariate values in the realized treatment and control groups
and the observed Y(0) in the control group, in the dataset generated in Step 1, we calculate test
statistics appropriate for the particular technique being evaluated (e.g., δUW , δPWLR, or Hotelling’s
T 2 for linear tests; expanded versions of δPWLR with polynomial or interactive terms, or statistics
based on gradient boosted trees and random forests, for non-linear tests.28

Step 3: (Resampling test). We conduct the resampling-based hypothesis tests described in subsection 4.2
in the paper (with B = 500). Thus, we calculate p-values appropriate for the particular observed
test statistic (e.g. from equation (51) for δPWLR; we also calculate analogous randomization p-values
for δUW , Hotelling’s T 2, and other statistics). Thus, we compare the “observed” test statistics from
Step 2 to their randomization distributions when treatment assignment is statistically independent
of potential outcomes, as well as covariates. We reject the null hypothesis of as-if random when
p∗ < 0.05.

Step 4: (Rejection rates). We repeat Steps 1-3 1000 times for a given expected correlation structure. That
is, on each of the 1000 runs, we produce a dataset of N = 500 observations with the given expected
covariate imbalance and prognosis. From this, we can calculate the rejection rate of each test: the
proportion of rejections across the 1000 runs.

28We use the Hotelling package in R.
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Step 5: (Varying prognosis and imbalance). We repeat steps 1-4 with different parameter values determining
covariate imbalance and prognosis.

Step 6A: (Minimal sufficiency, sufficiency, and not sufficiency). The first two sets of simulations explore the
following situations:

Case 1 (Minimal Sufficiency). In one set of simulations (comprising Steps 1-5), observed covariates
are minimally sufficient: in each data set generated in Step 1, Y(0) is a (linear) function of
standardized X1 and X2, and we use X1 and X2 in the observed treatment and control groups to
form δPWLR, δUW , δPWLR, and Hotelling’s T 2.

Case 2 (Sufficiency). In another set, the observed covariates are sufficient but not minimally so: again,
Y(0) is a (linear) function of standardized X1 and X2 but we use the observed X1, X2, and X3,
where X3 is a random variable taken from a standard normal distribution. X3 is unrelated to
potential outcomes but may be related to Z, i.e., imbalanced. This case captures the presence
of an irrelevant covariate in the test of as-if random.

Case 3 (Not Sufficiency). Finally, we consider a set of simulations in which observed covariates are
not sufficient: again, Y(0) is a (linear) function of standardized X1 and X2 but we observe
only X1 and X3, where X3 is defined the same way as in Case 2. We vary the prognosis and
imbalance of X1 as well as the imbalance of X3 and fix the prognosis and imbalance of the
unobserved covariate X2. Specifically, we fix X2 prognosis at 0.25 and set cor(X2, Z) = 0.15.

Step 6B (Prognosis R2 parameter). In the final set of non-linear simulations, we generate potential outcomes
as a non-linear function of covariates but introduce noise such that the overall prognosis of the
covariates is governed by a single parameter λ. See section 7.5.

Simulations were run on the High Performance Computing (Savio) server at the University of Cali-
fornia, Berkeley. The process outlined in Steps 1-6 runs in parallel on 24 CPU and takes on average 40
hours.

7.2 Informative covariates
We first consider cases in which measured covariates are fully informative, i.e., sufficient. In a first set
of simulations, we observe only signal covariates associated with potential outcomes, so the covariates
are minimally sufficient. In a second set, we also measure a noise variable X3 that is imbalanced but is
not prognostic; here, covariates are thus sufficient but not minimally so. Thus, we can assess whether
a prognosis-weighted test can mimic results from a minimally-sufficient set of prognostic covariates by
projecting out irrelevant covariates. The degree of prognosis varies across different simulations.

Figure A2 shows results for one set of simulations. In each plot, the prognosis (true standardized
coefficient) of covariate X1 varies along the vertical axis, while the vertical axis measures the proportion of
the 1000 tests in which the null is rejected. The four plots depict results with varied imbalance (measured
as the expected correlation ρ between the covariate and treatment assignment) of the potentially prognostic
variable X1 and the noise covariate X3. A correlation of ρ = 0.1 between a covariate and treatment
assignment corresponds to an expected standardized difference of means across treatment and control
groups of about 0.2. The variable X2 is set to have a fixed prognosis of 0.25 and is always balanced in
expectation.
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Figure A2: Informative covariates

The figure plots rejection rates as a function of X1 prognosis and X1 and X3 imbalance in a simulation, for
prognosis-weighted (dark solid line) as well as unweighted tests. Shaded areas are parts of the parameter
space in which as-if random holds. See the text in section 7.2 of this Appendix for further details.

In the top-left panel, all variables are independent of treatment assignment so as-if random every-
where holds, regardless of the prognosis of X1 (as indicated by the pink shading). Here, the weighted and
unweighted tests both perform well, controlling Type I error at similar rates. In the top-right panel, by
contrast, as-if random holds only at the origin, when the prognosis of X1 is zero. Away from the origin, X1

is both prognostic and imbalanced in expectation, so as-if random fails.
Two aspects of the results in the top-right panel are noteworthy. First, as indicated by the flatness of

the dashed and light solid lines, the unweighted tests are completely insensitive to the relative prognosis
of covariates. They thus reject at similar rates, whether X1 is prognostic or not—and thus whether as-if
random is true or false. Second and in contrast, the informativeness-weighted test is sensitive to prognosis:
as X1 prognosis increases, the test increasingly prioritizes the imbalance on X1 and rejects at rising rates.
Thus, in the top-right panel we see the prognosis-weighted test achieving both specificity (limiting Type I
error when as-if random is true) and power (limiting Type II error when it is false).

We see a similar pattern—insensitivity of unweighted tests to prognosis and increasing power of the
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informativeness-weighted test as prognosis increases—when we add imbalance of the noise covariate X3

(bottom panels). Now, however, the unweighted tests incorrectly reject as-if random at higher rates when
it is true (bottom-left panel, and at the origin in the bottom-right panel). This is due to their sensitivity to
the imbalance of the irrelevant covariate X3. The prognosis-weighted test, by contrast, projects out X3 and
bases the test solely on the prognostic covariates, which are balanced in the left panel. Thus, it has a lower
false positive rate than the unweighted tests.

As for the lower-right plot, we again see the prognosis-weighted test boosting both specificity and
power: when as-if random holds, at the origin with zero X1 prognosis, it correctly fails to reject the null,
whereas rejection rates are increasing in the prognosis of X1. By contrast, unweighted tests—sensitive as
they are to the imbalance of the noise covariate X3—reject the null at elevated rates whether it is true or
false. Although for some parameter values unweighted tests correctly reject as-if random when it is false
at higher rates, they also incorrectly reject as-if random when it is true. Because the relative prognosis
of covariates plays no role, the unweighted tests do not balance specificity—failing to reject as-if random
when it is true—and power—correctly rejecting as-if random when it is false.

Table A3 reports numerical results depicted graphically in Figure A1.

7.2.1 Full set of simulations with informative covariates

While Figure A2 and Table A1 report results from one set of simulations, we reach similar conclusions
from a broader set of simulations with greater variation in both imbalance and prognosis parameters.

In Figure A3, we compare the rejection rates of the prognosis-weighted test and Hotelling’s T 2 when
the null is true and when it is false, across this broader set. Here, we compare rejection rates as a function
of the imbalance R2 (calculated from the regression of treatment assignment on covariates) and the overall
prognosis R2 (calculated from the regression of control outcomes on covariates). When as-if random is
true (right plot), the tests offer similar control over Type I error except when prognosis is low, in which case
the unweighted tests overreject due to their sensitivity to imbalances on non-prognostic covariates. When
the null is false, however, the relative power of the prognosis-weighted test increases with the prognosis
R2. This is particularly important when imbalance is modest but prognostic covariates are imbalanced.

Thus, in Figure A3, for a given set of simulations with particular expected correlations, we plot the
balance R2—that is, the average R2 from the regression of treatment assignment on all relevant covariates
for each case, across all the simulations–against the prognosis R2, or the average R2 from the regression
of potential outcomes in the control group on all covariates. Thus, we put the simulation results in the
same imbalance-prognosis space as in Figure 1 in the paper. We code the simulations captured by each
data point according to whether the prognosis-weighted test rejects with greater probability (black points),
the unweighted test rejects with greater probability (red points), or the tests reject at the same rate (grey
points).

As with Figure A2, in Figure A3 we consider two situations: either as-if random is false (left panel)
or as-if random is true (right panel). In the left panel, when the prognosis R2 is near zero, the unweighted
tests often reject at higher rates, sensitive as they are to imbalance in non-prognostic covariates; this occurs
especially at very high levels of imbalance. When prognosis is more substantial, the tests reject at equal
rates when imbalance is also substantial—often reflecting the patterns in the simulations in Figures 1
and 3, where both tests reject with probability 1 once imbalance is substantial enough. Yet, with more
moderate levels of imbalance, the informativeness-weighted test correctly rejects as-if random with higher
probability, as long as there is some non-trivial level of prognosis. We note that in the sampled natural
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Table A3: Sufficient covariates: simulated rejection rates for each test

progX1 imbalX1 progX2 imbalX2 progX3 imbalX3 UW p PW p Hotelling p Rsqr prog Rsqr bal

0 0 0.25 0 0 0 0.001 0 0 1 0.002
0.2 0 0.25 0 0 0 0.001 0.001 0 1 0.002
0.4 0 0.25 0 0 0 0.002 0.002 0 1 0.002
0.6 0 0.25 0 0 0 0.002 0 0 1 0.002
0 0 0.25 0 0 0.05 0.021 0 0.013 1 0.004
0.2 0 0.25 0 0 0.05 0.016 0.001 0.005 1 0.004
0.4 0 0.25 0 0 0.05 0.017 0.001 0.008 1 0.004
0.6 0 0.25 0 0 0.05 0.013 0 0.005 1 0.004
0 0 0.25 0 0 0.1 0.163 0.002 0.253 1 0.012
0.2 0 0.25 0 0 0.1 0.133 0.001 0.246 1 0.012
0.4 0 0.25 0 0 0.1 0.143 0 0.223 1 0.012
0.6 0 0.25 0 0 0.1 0.134 0.002 0.243 1 0.011
0 0.05 0.25 0 0 0 0.012 0.001 0.003 1 0.004
0.2 0.05 0.25 0 0 0 0.016 0.022 0.007 1 0.004
0.4 0.05 0.25 0 0 0 0.015 0.056 0.006 1 0.004
0.6 0.05 0.25 0 0 0 0.016 0.063 0.013 1 0.004
0 0.05 0.25 0 0 0.05 0.15 0.001 0.054 1 0.007
0.2 0.05 0.25 0 0 0.05 0.13 0.018 0.041 1 0.007
0.4 0.05 0.25 0 0 0.05 0.129 0.039 0.04 1 0.007
0.6 0.05 0.25 0 0 0.05 0.147 0.066 0.036 1 0.007
0 0.05 0.25 0 0 0.1 0.529 0.001 0.394 1 0.015
0.2 0.05 0.25 0 0 0.1 0.478 0.024 0.4 1 0.015
0.4 0.05 0.25 0 0 0.1 0.481 0.055 0.39 1 0.015
0.6 0.05 0.25 0 0 0.1 0.506 0.057 0.413 1 0.015
0 0.1 0.25 0 0 0 0.134 0.001 0.261 1 0.012
0.2 0.1 0.25 0 0 0 0.138 0.181 0.262 1 0.012
0.4 0.1 0.25 0 0 0 0.136 0.46 0.256 1 0.0122
0.6 0.1 0.25 0 0 0 0.123 0.545 0.233 1 0.012
0 0.1 0.25 0 0 0.05 0.479 0.002 0.389 1 0.015
0.2 0.1 0.25 0 0 0.05 0.478 0.187 0.393 1 0.015
0.4 0.1 0.25 0 0 0.05 0.466 0.446 0.391 1 0.015
0.6 0.1 0.25 0 0 0.05 0.496 0.578 0.387 1 0.015
0 0.1 0.25 0 0 0.1 0.852 0.001 0.802 1 0.022
0.2 0.1 0.25 0 0 0.1 0.86 0.16 0.788 1 0.022
0.4 0.1 0.25 0 0 0.1 0.842 0.447 0.783 1 0.022
0.6 0.1 0.25 0 0 0.1 0.852 0.588 0.809 1 0.022

Note: Signal covariates are X1 and X2 and covariates included in the global tests are X1, X2, and X3. Covariate X2 is
balanced in expectation and has a fixed parameter value for prognosis (0.25). Rejection rates are calculated over 1000 values
of test statistic p-values. Further details of the data generating process can be found in Sections 7.1-7.2 of this appendix.
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experimental studies in Figure 1 in the paper, the imbalance R2s are mostly below 0.1. Thus, we would
argue, this situation of relatively low imbalance is the one in which most need a powerful test of as-if
random, and this is what the informativeness-weighted test delivers.

Conversely, when as-if random is true—and thus we do not wish to reject it—the Type I error rate of
the unweighted test is higher. As the right panel shows, it rejects at least as often as the prognosis-weighted
test when there is any non-zero level of prognosis; and it rejects more often when there is any imbalance
on irrelevant (i.e., non-prognostic) covariates. (Note the absence of data points away from the axes reflects
the structure of our simulation: with positive imbalance and positive prognosis, as-if random would be
false).

In sum, we could think about these results in terms of three cases. First, when covariates are both
highly prognostic and highly imbalanced, the weighted and unweighted tests reject with equal probability.
Second, when there is high imbalance and low prognosis, the unweighted test may be more powerful
when as-if random is false; but this runs the risk of spurious rejections when as-if random is true, as
the right panel shows. Third and finally, however, when there is low imbalance and high prognosis,
the informativeness-weighted test is both more powerful when as-if random is false and avoids spurious
rejections when it is true.

The simulations confirm that compared to unweighted tests, the informativeness-weighted test can
better detect the failure of as-if random while simultaneously limiting spurious rejections. In contrast,
tests that do not take account of the relative prognosis of covariates are prone to reject as-if random when
it is true or to fail to reject it when it is false, due to the balance or imbalance of irrelevant noise covariates.
By projecting out irrelevant covariates and prioritizing prognostic ones, the informativeness-weighted test
thus boosts both specificity and power.

7.3 Uninformative covariates
As noted in the paper, our simulations offer an important caveat. Consistent with our theoretical results,
the quality of tests—including prognosis-weighted ones—depends on the joint prognosis of measured
covariates.

In Figure A4, we consider simulations in which observed covariates are not sufficient, i.e., may be fully
or partially uninformative about potential outcomes. Thus, as before, we measure a potentially prognostic
covariate X1 and the irrelevant noise covariate X3. Now, however, a prognostic—and here, in contrast
to the previous simulations, imbalanced—covariate X2 is “omitted.” Thus, potential outcomes are related
to an unobserved as well as observed covariates, and the unobserved covariate is imbalanced as well as
prognostic. In the four plots, we again vary the expected imbalance of the potentially prognostic variable
X1 and the irrelevant noise covariate X3. Here, however—due to the prognosis and expected imbalance of
the unmeasured X2—as-if random is everywhere false. Table A2 gives a selection of the numerical results
depicted graphically in Figure A3.

There are two key takeaways. First, failure to measure imbalanced, prognostic covariates can dra-
matically reduce the power of balance tests. In the top-left plot—when only the unobserved prognostic
covariate is imbalanced—the weighted and unweighted tests both fail to detect the failure of as-if random.
Here, the observed covariates X1 and X3 are both balanced, so failure of as-if random arises only due the
imbalance of the prognostic X2, which is omitted from the test. Both unweighted and prognosis-weighted
tests reject at similarly low rates—producing a false negative rate of nearly 1.

Second and more reassuringly, however, the tests perform better when the signal covariates we do
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Figure A3: Broader Set of Simulations: Varying Imbalance and Prognosis

Difference in rejection rates of as-if random when it is false (left panel) and true (right panel), comparing
the prognosis-weighted and unweighted (Hotelling’s T 2) test. Positive (negative) signs indicate cases
where the prognosis-weighted test has a higher (lower) rejection rate than Hotelling’s T 2 test, with darker
shading representing greater absolute difference.
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Figure A4: Covariates not sufficient: omitting a prognostic and imbalanced variable

Here, we consider tests in which a covariate X2 that is prognostic (ρ = 0.25) and imbalanced (ρ = 0.15) in
expectation is not measured. The tests make use only of a potentially prognostic covariate X1 and
non-prognostic noise covariate X3. Here, as-if random is false in all cases. See subsection 7.3 of this
Appendix for further details.

measure are increasingly prognostic. In the top-right plot, for example, as X1 becomes more prognostic
(both in absolute terms and relative to the fixed prognosis of X2), the prognosis-weighted test becomes
more powerful. Note that in the bottom two plots, where X3 is imbalanced, the unweighted test rejects at
rates even higher than the prognosis-weighted test. Given that as-if random is here false, this might suggest
the desirability of a test that ignores prognosis, but this is misleading. The unweighted test rejects because
it is wrongly sensitive to imbalance on the irrelevant covariate X3. The difficulty is that in practice, we will
not know if we are in a setting in which as-if random is false, as in Figure A4, or true—as it is for some
parameter values in Figure A2, when the unweighted test erroneously rejects also due to its sensitivity
to an irrelevant imbalanced covariate. The good news is that while the sensitivity of unweighted tests
is invariant to prognosis, the weighted tests become increasingly powerful as we measure more relevant
covariates. The more informative they are, the less likely the problem of unobserved prognostic covariates
is to hinder the performance of the tests.
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Table A4: Covariates not sufficient: Simulated rejection rates for each test

progX1 imbalX1 progX2 imbalX2 progX3 imbalX3 UW p PW p Hotelling p Rsqr prog Rsqr bal

0 0 0.25 0.15 0 0 0.001 0 0.001 0.004 0.001
0.2 0 0.25 0.15 0 0 0 0 0 0.398 0.001
0.4 0 0.25 0.15 0 0 0 0 0 0.723 0.001
0.6 0 0.25 0.15 0 0 0.002 0.003 0 0.855 0.001
0 0 0.25 0.15 0 0.05 0.024 0.001 0.015 0.004 0.004
0.2 0 0.25 0.15 0 0.05 0.029 0.001 0.016 0.395 0.004
0.4 0 0.25 0.15 0 0.05 0.035 0.002 0.022 0.724 0.004
0.6 0 0.25 0.15 0 0.05 0.019 0.002 0.014 0.855 0.004
0 0 0.25 0.15 0 0.1 0.266 0.022 0.387 0.004 0.011
0.2 0 0.25 0.15 0 0.1 0.285 0.002 0.416 0.397 0.012
0.4 0 0.25 0.15 0 0.1 0.266 0.002 0.389 0.724 0.011
0.6 0 0.25 0.15 0 0.1 0.252 0.001 0.422 0.855 0.012
0 0.05 0.25 0.15 0 0 0.017 0 0.02 0.004 0.004
0.2 0.05 0.25 0.15 0 0 0.022 0.067 0.013 0.393 0.004
0.4 0.05 0.25 0.15 0 0 0.024 0.101 0.018 0.721 0.004
0.6 0.05 0.25 0.15 0 0 0.023 0.082 0.024 0.853 0.004
0 0.05 0.25 0.15 0 0.05 0.252 0.005 0.087 0.004 0.006
0.2 0.05 0.25 0.15 0 0.05 0.268 0.081 0.102 0.394 0.006
0.4 0.05 0.25 0.15 0 0.05 0.288 0.094 0.095 0.722 0.006
0.6 0.05 0.25 0.15 0 0.05 0.283 0.09 0.107 0.854 0.006
0 0.05 0.25 0.15 0 0.1 0.741 0.031 0.579 0.004 0.014
0.2 0.05 0.25 0.15 0 0.1 0.76 0.073 0.6 0.392 0.014
0.4 0.05 0.25 0.15 0 0.1 0.79 0.077 0.623 0.721 0.014
0.6 0.05 0.25 0.15 0 0.1 0.737 0.075 0.561 0.855 0.014
0 0.1 0.25 0.15 0 0 0.285 0.02 0.403 0.004 0.012
0.2 0.1 0.25 0.15 0 0 0.262 0.687 0.422 0.386 0.012
0.4 0.1 0.25 0.15 0 0 0.273 0.687 0.396 0.718 0.011
0.6 0.1 0.25 0.15 0 0 0.262 0.683 0.42 0.851 0.012
0 0.1 0.25 0.15 0 0.05 0.745 0.054 0.58 0.005 0.014
0.2 0.1 0.25 0.15 0 0.05 0.739 0.654 0.563 0.386 0.014
0.4 0.1 0.25 0.15 0 0.05 0.756 0.669 0.581 0.719 0.014
0.6 0.1 0.25 0.15 0 0.05 0.755 0.678 0.581 0.852 0.014
0 0.1 0.25 0.15 0 0.1 0.979 0.126 0.9 0.004 0.021
0.2 0.1 0.25 0.15 0 0.1 0.98 0.65 0.923 0.387 0.022
0.4 0.1 0.25 0.15 0 0.1 0.975 0.66 0.898 0.718 0.022
0.6 0.1 0.25 0.15 0 0.1 0.982 0.691 0.918 0.852 0.022

Note: Signal covariates are X1 and X2 and covariates included in the global tests are X1 and X3. Omitted covariate X2 has
fixed imbalance (0.15) and prognosis (0.25) parameter values. Rejection rates are calculated over 1000 values of test statistic
p-values. Further details of the data generating process can be found in Section 7.3 of this appendix.
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7.4 Performance of tests at threshold levels of prognosis
We can also look graphically at the sensitivity of tests across our full set of simulations, including those
cases in which covariates are sufficient and those where they are not.

Figure A5 depicts the power of weighted tests as prognosis varies, with darker shading of points for
higher power tests (and red points for those tests where power exceeds 80%). The null of as-if random
is false in these simulations, so the shading indicates the probability that a false null is rejected. We
include cases with sufficient covariates (left panel) and insufficient covariates (right panel). The horizontal
axis measures joint prognosis of the covariates (the R2 from the regression of control-group potential
outcomes on covariates), while the vertical axis measures the realized imbalance in treatment assignment
(the R2 from the regression of treatment assignment on covariates). In these simulations, we also observe
a possibly prognostic covariate X1. In the “not sufficient” case (right panel), we add an observed noise
covariate X3 unrelated to potential outcomes and an unobserved signal covariate X2 that is prognostic
(ρ = 0.25) and imbalanced (ρ = 0.15) in expectation. Here, as-if random is false in all cases.

As expected, the power of the tests is excellent with sufficient covariates, reaching power in excess of
80% at low levels of imbalance (e.g. when the imbalance R2 is less than 0.025). Perhaps more suprisingly,
the tests also achieve similar levels of power with insufficient covariates as long as the prognosis R2 is
large enough. Even with a prognosis R2 of 0.125, the tests achieve power in excess of 80% at when the
imbalance R2 is 0.025. Thus, even with low levels of expected imbalance, the test can detect failures of
as-if random with high probability when covariates are sufficiently prognostic.

While the precise thresholds are surely a function of the data-generating process and parameters used
in the simulations, it also appears that a conservative threshold would be a prognosis R2 between 0.1 and
0.2 for adequately powered tests. Returning to Figure 1 in the paper, we also see that the top threshold lies
at the upper bound of the lower prognosis tests but that many studies also do exceed the threshold.

7.5 Simulations under non-linearity
Our results so far have considered simulations in which potential outcomes are generated as linear func-
tions of covariates. Because the conditional expectation function in the finite population is linear, a linear
regression of control potential outcomes on covariates—in the control group sample—should well ap-
proximate the conditional expectation function, up to sampling error. While a simplifying assumption,
this approach usefully allows us to compare prognosis-weighted to unweighted tests and to assess how the
performance of tests varies as we modify the prognosis of covariates—both jointly and individually—as
well as patterns of covariate imbalance.

In this section, we examine how our tests perform if the conditional expectation of potential outcomes,
given covariates, is not linear. Specifically, we simulate three different scenarios to assess results un-
der non-linearity in the finite-population regression function, i.e., in the relationship between covariates
and potential outcomes. Thus, we consider settings in which the potential outcome regression function
comprise

1. k-level polynomial terms (section 7.5.1);

2. covariate interactions (section 7.5.2); and

3. two ‘difficult’, highly non-linear functions, one based on a ‘tree’ specification and the other a ‘sine’
specification (section 7.5.3).
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Figure A5: Power of weighted tests as prognosis varies

Here, we consider power in the full set of tests, including cases with sufficient covariates (left panel) and
insufficient covariates (right panel). Shading indicates the probability that a false null is rejected. The
horizontal axis measures joint prognosis of the covariates (the R2 from the regression of control-group
potential outcomes on covariates), while the vertical axis measures the realized imbalance in treatment
assignment (the R2 from the regression of treatment assignment on covariates). In these simulations, we
observe a possibly prognostic covariate X1. In the “not sufficient” case (right panel), we add an observed
noise covariate X3 unrelated to potential outcomes and an unobserved signal covariate X2 that is
prognostic (ρ = 0.25) and imbalanced (ρ = 0.15) in expectation. Here, as-if random is false in all cases.
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Here, we expand the range of tests to include those based on linear models with polynomials of the
covariates and/or interaction terms, as well as simple linear regressions; and machine learning techniques,
specifically gradient boosted trees and random forests.

We also consider whether metrics such as the prognosis R2 can allow us, by choosing the most accurate
fitting procedure for Y(0), potentially to improve performance by allowing the test to be based on the
best-fitting procedure. Selection of the best-fitting model is automated in our pwtest package with the
contest and pick winner functions.

We emphasize that, in our setting, any discrepancies between (a) the conditional relationship of Y(0)
and covariates in the finite population and (b) the fitting procedure for Ŷ(0) are not issues primarily of
biased inference. That is, our primary concern is not that E(̂β) , β; but rather that improvements in the
accuracy of fits of Ŷ(0)|X may improve test performance, in the sense of increasing power or specificity of
the test of as-if random.

7.5.1 k-level polynomials in the potential outcomes model

In order to assess test performance under non-linearity, we first repeat the procedure described in Step 1
in subsection 7.1. That is, we generate a dataset of N = 500 observations. The dataset has a treatment
assignment vector Z (with half the units assigned at random to treatment and half to control); potential
outcomes Y(1) and Y(0); and covariates Xp, with p = 1, 2. Covariates are drawn from a multivariate normal
distribution with mean 0 and standard deviation 1, and the elements of the variance-covariance matrix
governing the variables are defined in such a way that the expected correlation between covariates and
treatment assignment Z is determined by that covariate’s imbalance parameter; the expected correlation
between covariates is 0. As before, the average treatment effect is set to zero (i.e. Yi(0) = Y1(1) for all i).

The key deviation from our previous approach is that we define potential outcomes under control as as
a function of covariates such that

Y(0) = X1θ + βX2 (52)

where X1 is an N by K matrix where each column is given by Xk
1, where k = {1, 2, ...K}, K being the

highest polynomial term for X1 in the regression. β and θ (K x 1 vector) are prognostic coefficients. When
k = 3, for example, the data-generating process for potential outcomes is defined as:

Y(0) = θ1X1 + θ2X2
1 + θ3X3

1 + βX2 (53)

When K = 1, the simulation is mimics the approach we described above for Minimally Sufficient cases, so
increasing K allows us to compare test performances under at least two different variations of non-linearity
in potential outcome models.

We calculate the observed statistics δUW , δPWLR, and Hotelling’s T 2 described in Steps 2 in Section 7.1
the same way as before, meaning we use the OLS regressions described in the main paper to obtain δPWLR.
In addition, we calculate versions of δPWLR that allow for k-degree polynomials in the regression; call these
statistics δk

PWLR, where k = {2, ...K} so there are K total prognosis-weighted test statistics (including δPWLR

where k = 1). We also calculate versions of δPWLR allowing covariate interactions, as described in the next
sub-section (7.5.2), so that we can assess performance of the test when the non-linear test statistics do not
match the underlying form of non-linearity in the data-generating process.

Finally, we also calculate the prognosis R2 implied by the sample regression of Y(0) on (a) covariates
X1 and X2, where we take k from 1 to K, which gives us K prognosis R2s and (b) covariates X1, X2,
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and their interaction (as in the next subsection). Thus, in each of the realizations of the data-generating
process described in Step 1 above, we calculate the prognosis R2 for a given k-level regression as defined
by equation 52, yielding the R2 given the observed data. The first R2 measure therefore consists of the
average of these values over 1000 iterations of the data-generating process described in Step 4 above.

We repeat Steps 1-4 in subsection 7.1 with different parameter values determining X1 imbalance and
prognosis. The variable X2 is set to have a fixed prognosis of 0.25 (β = 0.25) and is always balanced in
expectation.

Results: polynomial simulations

Figure A6 shows simulation results, for a case where the data-generating process for potential out-
comes includes the k-level polynomials. Here we consider the k = 2 case (i.e., linear and squared terms in
the data-generating process), and we compare unweighted to prognosis-weighted tests, with and without
the k = 2 polynomial.

Several results are noteworthy. First, in the left column, when there is zero expected imbalance on the
potentially prognostic X1 term, all of the tests control Type 1 error at similar rates.

Second, however, when the potentially prognostic variables X1 and X2
1 are imbalanced (second and

third columns), we see greater divergence in the performance of different tests. Unweighted tests continue
to exhibit the problems identified in subsection 7.2: because they do not prioritize prognostic covariates,
they are prone to spurious rejections when as-if random is true but non-prognostic covariates are imbal-
anced. In addition, they generally have less power than the prognostic-weighted tests, particularly so as
X1 prognosis increases.

7.5.2 Covariate interactions in the potential outcomes model

We next probe the performance of our tests under an additional setting where linearity does not hold: in
theory, nonlinearity may also arise from the covariates jointly (rather than independently) determining
potential outcomes.

Under this approach, we define an alternative potential outcome model as follows:

Y(0) = β1X1 + β2X2 + β3(X1 ∗ X2) (54)

The goal of this simulation is to assess and compare the performance of different tests (especially, the
linear test without interactions and one that allows for interactions) in the presence of varied expected
imbalances and prognosis of the main term X1 and the interaction term or product term X1 ∗ X2.

Generating independent imbalance on the main and interaction terms

It is nontrivial to design a simulation in which we can control the imbalance of the interaction term
separately to the imbalance of the main terms.

In order to do this, we design a data-generating process based on Simpson’s Paradox: the goal is that
X1:X2 should be marginally balanced on X1 and X2, while nonetheless controlling the structure of the
product so that the product is correlated with treatment.

Our goal is to independently control three distinct correlations: Cor(Z, X1), Cor(Z, X2), and Cor(Z, X1 ∗

X2).
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Figure A6: Rejection rates of tests with a second-degree polynomial in the data-generating process.

The x-axis of the Figure A6 shows values of X1 prognosis and the y-axis shows rejection rates. The
columns show results under different values of X1 imbalance, with rows showing different values of
prognosis of X2

1 . The red bands highlight cases where the null hypothesis of as-if random holds.
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The trick is first to notice that, if X1 and X2 are mean-centered, we can divide the covariate space
(X1, X2) into quadrants, and induce the desired correlation structure by manipulating the realized correla-
tion between values in each quadrant and Z. We have the following three relationships:

Cor(Z, X1) ∝ E[Z|X1 > 0] − E[Z|X1 < 0] – that is, (Q1 + Q4) − (Q2 + Q3)

Cor(Z, X2) ∝ E[Z|X2 > 0] − E[Z|X2 < 0] – that is, (Q1 + Q2) − (Q3 + Q4)

Cor(Z, X1 · X2) ∝ E[Z|X1 · X2 > 0] − E[Z|X1 · X2 ≤ 0] – that is, (Q1 + Q3) − (Q2 + Q4)

Let p1 denote the treatment probability for units in quadrant Q1 where X1 > 0 and X2 > 0, p2 for units
in quadrant Q2 where X1 ≤ 0 and X2 > 0, p3 for units in quadrant Q3 where X1 ≤ 0 and X2 ≤ 0, and p4

for units in quadrant Q4 where X1 > 0 and X2 ≤ 0.
We need to control the probabilities (p1, p2, p3, p4). To do so, we introduce probabilities (α1, α2, α12),

which parameterize the desired imbalance of X1, X2, and X1:X2 respectively. The goal is now to relate
the quadrant probabilities to our parameters.

First, since correlation with X1 depends on differences between quadrants where X1 > 0 versus X1 ≤

0, the parameter α1 should appear with positive signs in Q1 and Q4 and negative signs in Q2 and Q3.
Similarly, α2 should have positive signs where X2 > 0 (Q1 and Q2) and negative signs where X2 ≤ 0 (Q3
and Q4). Finally, α12 should have positive signs where X1 ∗ X2 > 0 (Q1 and Q3, where both covariates
have the same sign) and negative signs where X1 ∗ X2 < 0 (Q2 and Q4, where the covariates have opposite
signs).

Combining these sign patterns with a baseline probability pbase = .05 yields:

p1 = pbase + α1 + α2 + α12

p2 = pbase − α1 + α2 − α12

p3 = pbase − α1 − α2 + α12

p4 = pbase + α1 − α2 − α12

provides the baseline treatment rate and α1, α2, and α12 are parameters controlling the desired correlations.
This parameterization ensures that changing any single α parameter affects only one target correlation
while leaving the others unchanged.

For the correlation with X1, treatment assignment must differ systematically between units where
X1 > 0 versus X1 ≤ 0, because correlation fundamentally measures how two variables co-vary, and in
this discrete setting, covariance reduces to the difference in conditional expectations across the relevant
partition of the space. When we partition units by the sign of X1, the correlation Cor(Z, X1) is directly
proportional to E[Z|X1 > 0] − E[Z|X1 ≤ 0], since this difference captures how much treatment assignment
systematically varies with the sign of X1. Examining the treatment probability expressions, we see that
α1 appears with positive signs in Q1 and Q4 and negative signs in Q2 and Q3. Therefore, the expected
treatment assignment conditional on X1 > 0 is proportional to (p1 + p4)/2 = pbase +α1, while the expected
assignment conditional on X1 ≤ 0 is proportional to (p2+ p3)/2 = pbase−α1. The difference between these
expectations is 2α1, establishing that α1 directly controls the correlation between Z and X1.

Similarly, the correlation with X2 requires differences between units where X2 > 0 versus X2 ≤ 0,
creating a horizontal partition that groups Q1 and Q2 against Q3 and Q4. In the probability expressions, α2

appears with positive signs in Q1 and Q2 and negative signs in Q3 and Q4, yielding expected assignments

61



of pbase+α2 for X2 > 0 and pbase−α2 for X2 ≤ 0. Again, the difference is 2α2, so α2 controls the correlation
with X2.

Since X1 ∗ X2 > 0 when X1 and X2 have the same sign, this occurs in quadrants Q1 (both positive) and
Q3 (both negative). Conversely, X1 ∗ X2 < 0 when X1 and X2 have opposite signs, which occurs in Q2 and
Q4. This creates a diagonal partition of the space. The parameter α12 appears with positive signs in Q1 and
Q3 and negative signs in Q2 and Q4, yielding expected assignments of pbase + α12 when X1 ∗ X2 > 0 and
pbase − α12 when X1 ∗ X2 < 0. The difference is 2α12, establishing control over the interaction correlation.

The independence of these three correlations follows from the orthogonality of the underlying sign
patterns. If we represent each α parameter’s influence as a vector over the four quadrants, we have, for
quadrants (Q1,Q2,Q3,Q4), α1 ∼ (+1,−1,−1,+1) α2 ∼ (+1,+1,−1,−1), and α12 ∼ (+1,−1,+1,−1).
These vectors are orthogonal in the sense that their dot products are zero, which means that changing one
parameter does not affect the correlations controlled by the others. This orthogonality is what allows the
simulation to independently manipulate the balance of main effects versus interaction effects.

X1

X2

Q1Q2

Q3 Q4

X1 > 0, X2 > 0X1 < 0, X2 > 0

X1 < 0, X2 < 0 X1 > 0, X2 < 0

p1p2

p3 p4

Figure A7: Quadrant-based paramaterization of covariate space to induce independent control of imbal-
ance in X1, X2, and X1 · X2. By dividing the space (X1, X2) into quadrants, and paramaterizing the
probability of treatment in each quadrant, we can design a simulation in which Cor(Z, X1), Cor(Z, X2)
and Cor(Z, X1 · X2) are parameterized separately.

Steps in the interaction simulations

We repeat Steps 1-4 in Section 7.1 with different parameter values determining the imbalance and
prognosis of X1 and the interaction term X1 ∗ X2.

We consider four cases of prognosis: one in which standardized coefficients on X1 and X1 ∗X2 are both
set to 0.25 in the data-generating process; one in which X1 prognosis is 0.25 and X1 ∗ X2 is 0.5; one in
which X1 prognosis is 0.5 and X1 ∗ X2 is 0.25; and one in which X1 and X1 ∗ X2 are both set to 0.5.

For each of these cases, following the procedure described above, we vary the expected imbalance of
X1 and X1 ∗ X2 factorially, in the sequence ρ = 0.0, 0.1, 0.2. This gives 3 × 3 = 9 combinations of X1 and
X1 ∗ X2 imbalance for each of the four cases of prognosis. The variable X2 is set to have a fixed prognosis
of 0.25 (β = 0.25) and is always balanced in expectation.
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Finally, for each of these combinations of covariate prognosis and imbalance, we plot the rejection
rates for the linear test (excluding interactions) and the test based on the interactive regression of Y(0)
on X1, X2, and their product. We take the prognosis R2 in each regression so that we can assess the
performance of the test based on the best fitting regression to the tests based on worse fitting regressions.

Interaction simulation results

Figures A8-A11 depict the results. Several conclusions are noteworthy.
First, in the top-left facet of all four prognosis cases in Figures A8-A11, the linear and interaction

models appropriately control Type I error. Here, both the main X1 and X2 terms as well as the interaction
term X1 ∗ X2 are balanced in expectation, so as-if random hold.

Second, in the other facets where as-if random does not hold (because of expected imbalance on X1

or X1 ∗ X2 or both) we see that the rejection rate of prognosis-weighted test is generally increasing in the
empirical prognosis R2 of the model with an interaction. The interactive test generally outperforms the
linear test without an interaction except when the product X1 ∗ X2 is balanced in expectation (top row of
Figures A8-A11).

Third, comparing the first, second, and third column in each figure, we see that the better performance
of the interactive test, relative to the linear test, is most pronounced in those cases where the main X1 term
is balanced but the interactive term X1 ∗ X2 is imbalanced (middle and bottom facets of first column). As
the imbalance of the linear term grows, the performance gap shrinks. As noted, the linear test outperforms
the interactive test when the interactive term is balanced (middle and right facets of the top row). In the
second and third rows, where there is imbalance on both the main and interactive term, the interactive test
outperforms the linear test, even when imbalance is greater on the linear term (e.g., the bottom facet of
the middle column). However, when imbalance is substantial on both terms (e.g., the middle and bottom
facets of the final column), the difference in the performance of the linear and interactive tests is minor,
even when the product term is more imbalanced than the main term.

Finally, comparing across Figures A8-A11, we can also see that the gap between the performance of
the interactive and linear tests is greatest when the product term is relatively prognostic, compared to the
main term: compare for instance Figure A9, where the prognosis of the interactive term is 0.5 compared
to 0.25 for the main term, and Figure A10, where the prognosis of the interactive term is instead 0.25
compared to 0.5 for the main term. In the former, the gap in rejection rates is substantial when the product
term is also more imbalanced than the main term (middle and bottom facets of the middle column in
Figure A9). In contrast, when the main term is relatively prognostic compared to the interactive term,
the performance of the tests is nearly indistinguishable even when the interactive term is more highly
imbalanced.

One other feature of the simulation results that may be noteworthy is the excellent performance of the
tests, even at relatively low prognosis R2s. For example, when the main and interactive terms are both
prognostic and imbalanced (e.g. the middle and bottom facet of the final column in each figure), both tests
reach rejection rates near 1 at empirical R2s between 0.02 and 0.06. While this may depend on specifics of
the simulation and data-generating process, it broadly reinforces the conclusion discussed in section 7.4,
in which we saw that the tests could reach adequate performance at moderate levels of prognosis. (In the
simulations in section 7.4, power of 80% was reaching with prognosis R2 between 0.1 and 0.2).

In sum, the conclusions are thus broadly similar to those for the polynomial case in subsection 7.5.1.
The linear test often does quite well, relative to the interactive test, as long as the main term is both
imbalanced in expectation and prognostic. In contrast, in those cases where there is greater imbalance on
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Figure A8: Rejection rates of prognosis weighted test in the presence of a interaction term between
X1 and X2 in the data generating process (equal X1 and X1 ∗ X2 prognosis of 0.25). The horizontal
axis shows the empirical prognosis R2 of the interaction model, and the left vertical axis rejection rates,
as defined above. The row headers show the expected imbalance of X1 (i.e. the main linear term in the
d.g.p.), in a sequence from 0 to 0.1 to 0.2, and the column headers (on the right side of the plot’s vertical
axis) show the expected imbalance X1 ∗ X2 (the coefficient on the interaction term in the d.g.p.), in the
same sequence. Thus, the rows plot results under different values of X1 imbalance, while columns plot
results under different values of X1 ∗ X2 imbalance. As-if random holds in the upper-left facet, where
both X1 and the product of X1 and X2 are balanced in expectation. The variable X2 is set to have a fixed
prognosis of 0.25 (β = 0.25) and is always balanced in expectation. In this simulation, the prognosis of
X1 (the coefficient on the linear X1 term in the d.g.p.) and the prognosis of X1 ∗ X2 (the coefficient on the
interaction term in the d.g.p.) are both fixed at 0.25.
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Figure A9: Rejection rates of prognosis weighted test in the presence of a interaction term between
X1 and X2 in the data generating process (X1 prognosis of 0.25 and and X1 ∗ X2 prognosis of 0.5).
The horizontal axis shows the empirical prognosis R2 of the interaction model, and the left vertical axis
rejection rates, as defined above. The row headers show the expected imbalance of X1 (i.e. the main linear
term in the d.g.p.), in a sequence from 0 to 0.1 to 0.2, and the column headers (on the right side of the
plot’s vertical axis) show the expected imbalance X1 ∗ X2 (the coefficient on the interaction term in the
d.g.p.), in the same sequence. Thus, the rows plot results under different values of X1 imbalance, while
columns plot results under different values of X1 ∗ X2 imbalance. As-if random holds in the upper-left
facet, where both X1 and the product of X1 and X2 are balanced in expectation. The variable X2 is set to
have a fixed prognosis of 0.25 (β = 0.25) and is always balanced in expectation. In this simulation, the
prognosis of X1 (the coefficient on the linear X1 term in the d.g.p.) is 0.25 and the prognosis of X1 ∗ X2

(the coefficient on the interaction term in the d.g.p.) is at 0.5.
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Figure A10: Rejection rates of prognosis weighted test in the presence of a interaction term between
X1 and X2 in the data generating process (X1 prognosis of 0.5 and and X1 ∗ X2 prognosis of 0.25).
The horizontal axis shows the empirical prognosis R2 of the interaction model, and the left vertical axis
rejection rates, as defined above. The row headers show the expected imbalance of X1 (i.e. the main linear
term in the d.g.p.), in a sequence from 0 to 0.1 to 0.2, and the column headers (on the right side of the
plot’s vertical axis) show the expected imbalance X1 ∗ X2 (the coefficient on the interaction term in the
d.g.p.), in the same sequence. Thus, the rows plot results under different values of X1 imbalance, while
columns plot results under different values of X1 ∗ X2 imbalance. As-if random holds in the upper-left
facet, where both X1 and the product of X1 and X2 are balanced in expectation. The variable X2 is set to
have a fixed prognosis of 0.25 (β = 0.25) and is always balanced in expectation. In this simulation, the
prognosis of X1 (the coefficient on the linear X1 term in the d.g.p.) is 0.5 and the prognosis of X1 ∗ X2 (the
coefficient on the interaction term in the d.g.p.) is at 0.25.
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Figure A11: Rejection rates of prognosis weighted test in the presence of a interaction term between
X1 and X2 in the data generating process (equal X1 and X1 ∗ X2 prognosis of 0.5). The horizontal
axis shows the empirical prognosis R2 of the interaction model, and the left vertical axis rejection rates,
as defined above. The row headers show the expected imbalance of X1 (i.e. the main linear term in the
d.g.p.), in a sequence from 0 to 0.1 to 0.2, and the column headers (on the right side of the plot’s vertical
axis) show the expected imbalance X1 ∗ X2 (the coefficient on the interaction term in the d.g.p.), in the
same sequence. Thus, the rows plot results under different values of X1 imbalance, while columns plot
results under different values of X1 ∗ X2 imbalance. As-if random holds in the upper-left facet, where
both X1 and the product of X1 and X2 are balanced in expectation. The variable X2 is set to have a fixed
prognosis of 0.25 (β = 0.25) and is always balanced in expectation. In this simulation, the prognosis of
X1 (the coefficient on the linear X1 term in the d.g.p.) and the prognosis of X1 ∗ X2 (the coefficient on the
interaction term in the d.g.p.) are both fixed at 0.5.
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the interactive term alone, and that term is more prognostic in the data-generating process for Y(0) than
the main term, we see more divergence in performance. In many cases, it may therefore be adequate to
use the simple and interpretable linear test; yet analysts should consider the substantive domain under
consideration and be attentive to the possibility of non-linear imbalances on prognostic variables. The
issue of non-linear prognostic imbalance has not received attention in previous work on covariate balance
testing, to our knowledge, so that is a contribution of our work.

7.5.3 Complex DGPs

Additionally, we evaluate the testing methods on two ‘difficult’ data-generating processes with highly
nonlinear structure.

The simulation implements two distinct data generating processes for potential outcomes under con-
trol. The “tree” specification creates regime-dependent relationships based on the sign of the interaction
term:

Y0 =

β1X2
1 + β2X2 if X1 ∗ X2 > 0

β3X1 + β4X2
2 if X1 ∗ X2 ≤ 0

This specification tests the method’s performance when the functional form switches discretely based on
the interaction term, creating fundamentally different covariate-outcome relationships across regions of
the space. The “sine” specification incorporates high-frequency nonlinearities:

Y0 = β1X1 + β2 sin(5X1) + β3X2
2 + β4X1 ∗ X2

This formulation challenges linear prognosis models with oscillatory components that standard polynomial
approximations cannot capture well.

Imbalance is implemented by constructing a continuous score Zscore as:

Zscore = α1X1 + α2X2 + α3(X2
1 − 1) + α4(X2

2 − 1) + α5X1 ∗ X2 + ϵ

where ϵ ∼ N(0, 1) provides random variation and the α parameters correspond to the desired correlations
with X1, X2, X2

1 , X2
2 , and X1 ∗ X2 respectively. The quadratic terms are centered by subtracting 1 to reduce

their mechanical correlation with the linear terms, since E[X2
i ] = 1 when Xi ∼ N(0, 1). Binary treatment

assignment follows from Z = 1(Zscore > median(Zscore)), ensuring exactly half the population receives
treatment while preserving the correlation structure embedded in the scoring function.

Each of the simulations above follows the same orthogonalization procedure to achieve the target
R2 (level of prognosis). The signal component is standardized, orthogonal noise is generated through
regression residuals, and the final potential outcomes are constructed as

Y0 = λY0,signal +
√

1 − λ2Y0,noise

where λ =
√

R2
target.

Results with complex nonlinear data-generating process

Figures A12 and A13 depict the results. As in our previous simulations, the prognosis-weighted based
on ”saturated” linear regressions—i.e., those with expanded polynomial bases or covariate interactions—
offer improvements in power both over simple linear methods and, perhaps surprisingly, the machine

68



learning methods and the best-fitting method chosen in each run of the simulation. This is likely due to
greater stability: the machine-learning and best-fitting methods chosen in the control group may lead to
a form of overfitting, limiting power when results are extrapolated to the treatment group. This should
be studied in further simulations with greater numbers of covariates. However, our results here ven with
the complex, ‘difficult’ data-generating processes, the expanded linear model with polynomial bases and
covariate interactions has the greatest power. Along with the greater simplicity and interpretability of the
prognosis weights in the linear methods, this lead to a general preference tests based on (saturated) linear
fits.
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Figure A12: Rejection rates of prognosis weighted test in the presence of the complex DGP using
the “tree” specification described in Section 7.5.3. All covariates are either balanced in expectation
across treatment and control (left panel) or equally imbalanced in expectation (right panel). The target R2

parameter in the x-axis takes the values in {0, 0.05, 0.1, 0.15, 0.20, 0.25}. Model specifications for fitting
Ŷ include a tuned gradient-boosting model (”gb”), a simple linear regression using X1 and X2 (”linear”),
a regression also including second degree polynomials and interactions for X1 and X2 (”lm full”), and a
tuned random forest model. We also display rejection rates for the “best” model (from all listed) for each
instance of the data-generating process based on R2 values of the prognosis regression fit.
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Figure A13: Rejection rates of prognosis weighted test in the presence of the complex DGP using
the “sine” specification described in Section 7.5.3. All covariates are either balanced in expectation
across treatment and control (left panel) or equally imbalanced in expectation (right panel). The target R2

parameter in the x-axis takes the values in {0, 0.05, 0.1, 0.15, 0.20, 0.25}. Model specifications for fitting
Ŷ include a tuned gradient-boosting model (”gb”), a simple linear regression using X1 and X2 (”linear”),
a regression also including second degree polynomials and interactions for X1 and X2 (”lm full”), and a
tuned random forest model. We also display rejection rates for the “best” model (from all listed) for each
instance of the data-generating process based on R2 values of the prognosis regression fit.
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7.6 Simulations: main takeaways
Overall, the lessons of the simulations for researchers are straightforward.

First, the prognosis of covariates is fundamental for the overall performance of balance tests. While
there is no absolute threshold of required prognosis—as this will depend on the data-generating process—
our simulations suggest improvements in power once the prognosis R2 reaches a fairly minimimal 0.125.
In general, a prognosis in excess of 0.2 would surely be desirable, but the main rule is that analysts should
endeavor to measure the most prognostic covariates possible. This will maximize the prognosis R2, which
should be reported.

Second, given a particular set of measured (and ideally jointly prognostic) covariates, we can most
effectively limit both false positives and false negatives simultaneously by prioritizing the most informative
individual covariates—as in our prognosis-weighted test. Our test procedure essentially attempts to create
a minimally sufficent set by prioritizing the most prognostic covariates for testing. As covariates overall
become more prognostic, projecting out irrelevant covariates and focusing on the relatively prognostic
ones can avoid both false positives and false negatives.

Thus, our results illustrate how prognosis weighting can reduce both false negatives and false posi-
tives. The performance of the tests depends on the overall prognosis of measured covariates. In contrast,
unweighted tests that do not use information on covariate prognosis sacrifice power and/or specificity.

8 Software implementation: R package pwtest

8.1 Overview of pwtest
The package pwtest implements the prognosis-weighted test we propose and offers a visualization tool
for diagnosing covariate-by-covariate balance and prognosis. Users can easily extract the global p-values
from our test for easy reporting.

We offer three main functions:

• pwtest() produces unweighted (optional) and prognosis-weighted statistics with standard errors
and p-values for the test of as-if random.

• pwtest rdd() produces unweighted (optional) and prognosis-weighted statistics with standard er-
rors and p-values for the test of continuity (RD designs).

• prog bal() generates a plot of standardized covariate difference-in-means in the y-axis and prog-
nosis weights as standardized coefficients from regression of outcome on control units. The plot
offers a visual diagnostic for covariate-by-covariate standardized difference in means and prognosis
weights from standardized coefficients of prognostic regression of YC(0) on set of covariates. The
black dots show covariates with significant p-values (α = 0.05) two-tailed t-tests of difference in
means. The red triangle indicates the value of the R-squared from the prognosis regression on the
x-axis and the balance regression on the y-axis.

8.2 Treatment of missing data
The software implements our baseline prognosis-weighted test of as-if random in such a way as to pre-
serve as much covariate data as possible. This is important because in applications, covariate data is often
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missing; moreover, the missingness is uneven across different covariates. Standard covariate-by-covariate
balance tests therefore may have different effective sample (study group) sizes for different covariates.
Taking differences of means separately for each covariate preserves these differences, with variance cal-
culations and p-values for hypothesis tests reflecting particular effective sample size for each covariate.

We replicate this approach in our software implementation. The test statistic δPWLR, for example,
is calculated as the vector product of prognosis weights, estimated in the control group, and the vector
containing differences of means for each covariate. Thus, the differences of means across treatment and
control is calculated separately for each covariate, using all available data (as long as the treatment indica-
tor is not missing for the covariate, so that control and treatment observations can be distinguished). This
applies also to polynomial and interaction versions of the regression-based test.

This is an important point to underscore because we found that in applications, results can be highly
sensitive the treatment of missing data (for instance, using listwise deletion so that only cases with obser-
vations for all covariates are included). See, for instance, discussion of analysis of Caughey and Sekhon
(2011) in section 5 of the paper.

For tests of the continuity assumption in RD designs as well as the machine learning approaches, the
approach differs somewhat. For instance, in tests using δRD

PW , we use rdrobust for fitting the prognosis-
weighted intercepts and thus inherit the listwise-deletion defaults.

8.3 Installation instructions

# i n s t a l l d e v e l o p m e n t v e r s i o n
d e v t o o l s : : i n s t a l l g i t h u b ( ” c l a r a b i c a l h o / p w t e s t ” )

8.4 Usage example
Below we show code that can be used to install the package pwtest to implement our prognosis-weighted
tests using the pwtest function.

We offer an example of the code syntax using open-source data available from Caughey and Sekhon
(2011). The code produces the results for the Caughey and Sekhon study reported in Figure 1 in the paper.

The data were downloaded in .Rdata format from the Harvard Dataverse at
https://dataverse.harvard.edu/file.xhtml?persistentId=doi:10.7910/DVN/8EYYA2/DRWB57.

l i b r a r y ( p w t e s t )

# load r e p r o d u c t i o n da ta
load ( f i l e = ” R D R e p l i c a t i o n . RData ” )

# f i l t e r as per R D r d o b R e p l i c a t i o n . do
cs a s i f <− f i l t e r ( x , Use == 1 & abs ( DifDPct ) < . 5 & ! i s . na ( DifDPct ) )
c s rd <− f i l t e r ( x , Use == 1 & ! i s . na ( DifDPct ) )

# as− i f random t e s t
d e l t a np <− p w t e s t ( data = cs a s i f ,

c o v a r i a t e s = c ( ”DWinPrv” , ” DPctPrv ” , ” DifDPPrv ” ,
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”IncDWNOM1” , ” ElcSwing ” , ” DemInc ” , ” NonDInc ” ,
” PrvTrmsD ” , ” PrvTrmsO ” , ”RExpAdv” , ”DExpAdv” ,
”SoSDem” , ”GovDem” , ” V t T o tP c t ” ) ,

t r e a t m e n t = ”DemWin” ,
outcome = ” DPctNxt ” ,
ns ims = 500)

# as− i f random t e s t r e s u l t s
d e l t a np$ e s t i m a t e s

# t e s t i n g c o n t i n u i t y o f p o t e n t i a l outcome i n RD d e s i g n
d e l t a rd <− p w t e s t rdd (

data = cs rd ,
c o v a r i a t e s = c ( ”DWinPrv” , ” DPctPrv ” , ” DifDPPrv ” ,

”IncDWNOM1” , ” ElcSwing ” , ” DemInc ” , ” NonDInc ” ,
” PrvTrmsD ” , ” PrvTrmsO ” , ”RExpAdv” , ”DExpAdv” ,
”SoSDem” , ”GovDem” , ” V t T o tP c t ” ) ,

t r e a t m e n t = ”DemWin” ,
r u n n i n g var = ” DifDPct ” ,
outcome = ” DPctNxt ” ,
ns ims = 500 ,
se t y p e = ” b o o t s t r a p ”

)

# c o n t i n u i t y t e s t r e s u l t s
d e l t a rd $ e s t i m a t e s

# example graph
p l o t p b a l ( d e l t a np , l a b e l o p t i o n = ”minmax” ,

show c o l o r l egend = TRUE)
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