
Instrumental variables: From structural equation models
to design-based causal inference∗

Christopher L. Carter†and Thad Dunning‡

This draft: July 1, 2019

Instrumental-variables (IV) analysis bridges structural equation modeling and design-
based methods for causal inference. In its original formulation, instrumental variables were
designed to help overcome the endogeneity of price and quantity to derive supply and demand
curves; by finding a third variable that was correlated with the supply but not the demand
of a good (or vice versa), scholars sought to map, in a system of structural equations, how
supply and demand respond to changes in prices. Later, social scientists would use insights
from IV to improve analyses of experiments, in particular, to estimate causal effects for those
units who comply with their assignment to a particular treatment status. Thus, the use of
instrumental variables also spans observational and experimental research.

In both kinds of applications, instrumental variables appeals to an assumption of ran-
dom or as-if random assignment of units to causal conditions. In structural equation mod-
eling, randomization implies statistical independence of the causal variable(s) and the error
term in a regression model—that is, exogeneity. In the observational world, such assignment
occurs naturally, or is otherwise out of the control of the researcher—often thereby raising
concerns about whether assignment is really as good as random. When plausible, however,
this assumption allows researchers to obviate concerns about confounding variables that
complicate drawing causal inferences from observational data. IV thus promises to marry
the realism and macro focus of observational research to the rigor of experimental methods.

Yet, in observational and experimental work alike, (as-if) random assignment alone
does not guarantee valid causal inference under the IV framework. Other assumptions are
also needed, and these often cannot be fully tested from the data. Furthermore, the assump-
tions invoked by structural equation models that are fit to observational data (e.g., supply
and demand curves) carry different weight and meaning, as compared to those required to
estimate complier average causal effects in an experiment.

We draw attention to these points of overlap and divergence between different usages
of instrumental variables in this chapter. We begin with a discussion of early IV work in
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the structural equation modeling (SEM) framework, highlighting the key assumptions and
potential places where they may break down. We then discuss applications of IV to design-
based research under a potential outcomes model. We detail similarities and differences
in the assumptions that these two types of applications entail. A key distinction involves
the stipulation of a linear response schedule with constant effects across units in the SEM
framework. Relaxing this assumption in the potential outcomes framework allows for clear
definition of heterogeneous unit-level causal effects, which proves particularly important in
experiments with non-compliance. Moreover, the potential outcomes framework disaggre-
gates and clarifies other key assumptions often left implicit in the SEM framework. Yet, both
approaches face important challenges in generalizing effects beyond the variation induced by
a particular instrument. In a final section, we illustrate these points by comparing two dif-
ferent instrumental-variables strategies—one observational and the other experimental—for
investigating the effect of price changes on demand for coffee.

1 IV in structural equation models
The use of instrumental variables originated in simultaneous equation models, in which

researchers sought to estimate supply and demand curves from equilibrium values of price
and quantity (Angrist and Krueger 2001; Stock and Trebbi 2003: 179). Because supply and
demand curves map how quantity supplied and demanded responds to changes in prices,
they can be considered “response schedules” or “structural equations,” where the regression
of quantity, Q, on price, P , carries a causal interpretation (Freedman 2009; Imbens 2014:
9).1 A researcher may stipulate, for instance, that demand is determined according to

Qt = β0 + β1Pt + β3Xt + γt, (1)

where Qt is the quantity of a product demanded at time t, Pt is its price, Xt is a matrix of
exogenous variables affecting demand, and γt is a random error (disturbance) term.

A difficulty for estimating equation (1), however, is that the quantity of the good
supplied is also a function of Pt. Suppose the supply curve is given by

Qt = β4 + β5Pt + β6Zt + γt, (2)

where Zt is a matrix of variables affecting supply.2 Were the supply curve to remain fixed
while the demand curve shifted, data on equilibrium levels of price and output could allow
a researcher to trace out the demand equation. Yet, both curves may shift as a function of
shared market conditions. In an early analysis of the impact of tariffs in markets for butter
and flaxseed, the mathematician and economist Philip G. Wright noted this problem: “If
both supply and demand conditions change, price-output data yield no information as to
either curve. Unfortunately . . . [this case] is the more common” (Wright 1928: 296). Indeed,
1 We refer in this paper to “structural equation models” in this sense. One stream of research uses the term

more specifically to refer to systems of equations linking unobservable “latent” constructs; see e.g. Bollen
(1989).

2 We use the typical language of supply and demand “curves” here, even though the response schedules in
equations (1) and (2) are linear in Pt.
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if Xt = Zt in equations (1) and (2)—that is, the same variables affect the quantity of the
good demanded and supplied—then data on quantities and prices cannot uniquely identify
the supply and demand curves.

Wright (1928) proposed an initial solution to this problem by using variables that af-
fected supply without independently shaping demand (and vice-versa).3 When such variables
can be found, the columns of the matrix Xt in equation (1) are not identical to the columns of
Zt in equation (2). Using what came to be called “instrumental variables”—that is, variables
in Xt that are excluded from Zt, and vice versa—Wright determined the elasticity of the
supply (and demand) functions of flaxseed. One instrument Wright used to estimate supply
elasticity was the price of a flaxseed substitute, cottonseed. This example already suggests
difficulties in finding viable instrumental variables, however: shocks to substitutes might
affect not only the demand for, but also the supply of flaxseed, perhaps because producers
anticipate shifts in the demand curve.

Estimating equations (1) and (2) raises related difficulties. Manipulation of the price
of the good affects quantity in both equations: supply and demand are jointly determined
within a system of structural equations. Moreover, unmeasured variables that affect the
quantity of demand may also affect supply, resulting in endogeneity—that is, correlation
between disturbances and an explanatory variable (Freedman 2006: 699; Freedman 2009;
Imbens 2014: 9). In that case, the Ordinary Least Squares (OLS) estimate of β1 in Equation
1 is biased by (P ′P )−1P ′E(γ|P ), when E(γ|P ) ̸= 0 (Freedman 2009: 181). Yet, as long as
cottonseed is correlated with flaxseed price but uncorrelated with the disturbance term from
the demand equation, instrumental-variables analysis can provide a consistent estimator of
demand elasticity (Angrist and Krueger 2001: 70).

Wright’s work went largely unnoticed and played little role in the development of the
IV method in econometrics.4 In fact, there was no further work on instrumental variables
until the 1940s, when Reirsøl’s (1945) dissertation demonstrated that model parameters can
be identified using the additional information provided by an “instrumental set of variables”
(Angrist and Krueger 2001; Morgan 1990; Aldrich 1993). Building on the further work
of Geary (1949) and Durbin (1954), Sargan (1958) demonstrated the consistency of the
instrumental variables estimator. Wald (1940) had previously shown the consistency of an
equivalent “grouping” estimator.5

While much of this early research sought to address measurement error in independent
variables, the IV framework has gained its most prominent use in addressing the problem of
omitted variable bias. A researcher interested in a causal effect of an explanatory variable
Xi on an outcome variable Yi may stipulate the response schedule,

Yi = β0 + β1Xi + ϵi. (3)

If unmeasured variables not included in equation (3) are correlated with the explanatory
3 While Philip G. Wright’s name is on the piece, the key finding is in Appendix B, which is believed by

some to have been written by his son, Sewall. The elder Wright also discusses his son’s closely related
methods of causal path analysis. However, Stock and Trebbi (2003), using stylometric analysis, conclude
that Philip was the most likely author.

4 Wright’s innovation was only recognized in the 1970s, when Goldberger (1972) highlighted Wright’s con-
tribution to structural equation methods (Aldrich 1993: 270, fn. 34).

5 We show the equivalence of the IV estimator and Wald’s grouping estimator below.

3



variable, such that ϵi and Xi are statistically dependent, OLS will yield biased and incon-
sistent estimates of β1. However, a third variable, Zi that is correlated with Xi but not ϵi
offers a way to identify β1. Specifically, consistent estimation of β1 can be obtained from
the “first stage” regression of Xi on Zi and then a second-stage regression of Yi on the fitted
values of Xi, or X̂i, from the first stage.6 In matrix notation, this “two-stage least squares”
(2SLS) estimation of β1 can be written as

β̂1,2SLS = (X̂ ′X̂)−1X̂ ′Y,

where X̂ = Z(Z ′Z)−1Z ′X.
(4)

Other derivations of the multivariate instrumental-variables least squares (IVLS) estimator
can be rearranged to show their equivalence with equation (4) (Freedman 2009: 178-9).
In the bivariate model in equation (3), equation (4) is equivalent to dividing the regression
coefficient of the “reduced form” regression of Yi on a variable Zi by the regression coefficient
obtained in the first-stage regression of Xi on Zi:7

β̂1,2SLS =

Ĉov(Yi,Zi)

V̂ar(Zi)

Ĉov(Xi,Zi)

V̂ar(Zi)

=
Ĉov(Yi, Zi)

Ĉov(Xi, Zi)
. (5)

We return to equation (5) in the next section on IV analysis in design-based inference, where
the “reduced form” regression of Yi on Zi is referred to as “intent-to-treat” analysis.

Instrumental-variables analysis requires several crucial assumptions for consistent es-
timation of β1 by the method in (4) or (5). Some of these assumptions are mechanical,
meaning that the calculation of the 2SLS estimator requires them to be true. To solve
Equation (4), the number of units must be at least as large as the number of independent
variables (i.e., n > q ≥ p where n is the number of observations, q is the number of columns
in Z, and p is the number of columns in X); and Z ′X and Z ′Z must have full rank of p and
q respectively.8 Additionally, we require in practice a sufficiently strong covariance between
Xi and Zi: the so-called “weak instrument” problem exacerbates finite-sample bias in the IV
estimator.9 Indeed, in finite samples with instruments that are only weakly related to the
endogenous regressors, the asymptotic unbiasedness of the 2SLS estimator in a hypothetical,
infinitely large sample—i.e., its consistency—may be of limited practical utility (Staiger and
Stock 1997). We can diagnose weak instruments by examining the relationship between Xi

and Zi; as a rule of thumb, F-statistics of less than 10 indicate a weak instrument (Staiger
and Stock 1997). Each of these assumptions may be evaluated from the data.

However, other key assumptions of structural equation models are more difficult or
impossible to test. Each assumption merits careful consideration in applications of the
6 The fitted values X̂i are sometimes called “predicted” values of Xi, though “post-dicted” is usually more

accurate. Importantly, we cannot simply use the values of X̂ to calculate the variance-covariance matrix
of β̂1, as this produces inconsistent estimation of σ2 (Greene 2003: 79).

7 A derivation can be found in the Appendix; see (A.1).
8 A model in which q = p is “just-identified” while the case with q > p is “over-identified.”
9 There is, of course, also a mechanical reason for this, related to the previous paragraph and the rank

condition; if Cov(Xi, Zi) = 0, then the estimator of β1 found in Equation (5) is undefined.
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method. First and perhaps most fundamentally, valid IV analysis of structural equation
models requires that the data were generated according to the posited response schedule—
that is, a regression model such as equation (3):

Yi = β0 + β1Xi + ϵi.

Because the model stipulates the effect of hypothetical interventions to alter values of Xi,
β1 is said to carry a causal interpretation: it is the causal effect of Xi on Yi. However, in
observational studies—by definition—no researcher intervened in the system to manipulate
the value of Xi (Freedman 2009). Whether the model captures what would happen if, say,
a researcher varied Xi experimentally is usually a matter of conjecture. We return to this
idea of invariance to manipulation in our discussion of design-based inference.

The stipulation of this model embeds several auxiliary postulates, with specific impli-
cations for IV estimation. First—as often noted in methodological discussion of IV analysis,
and as sometimes discussed in applications as well—the assumption that the response sched-
ule is correctly specified implies an “exclusion restriction.” That is, the instrument is excluded
from equation (3). Thus, Zi does not have a “direct” effect on Yi: it does not itself belong in
the response schedule (Equation 3), and if it is related to Yi, it is only through its effect on
Xi. We refer to this assumption as the “exclusion restriction,” although some scholars use
this term to refer to the combination of this assumption and the independence of Zi and ϵi;
we treat the latter as a distinct assumption (Angrist and Pischke 2008: 117).10 Additional
collection of qualitative and quantitative data can help to rule out plausible alternative chan-
nels through which Zi might have a direct effect on Yi. Yet, for reasons we discuss further
below, convincingly demonstrating that the instrument only affects the outcome through the
endogenous regressor of interest raises considerable difficulties.

In addition, the structural model critically implies a set of linearity and constancy
assumptions. Equation (3) stipulates that the response schedule is linear in the parameter
β1: thus, the effect is proportional to the value of Xi. In addition, for each unit i, the response
Yi only depends on value of the regressor Xi: the exposure to this treatment of other units
j ̸= i is irrelevant. This is an analogue to the “non-interference” assumption, a component
of the “stable-unit treatment value assumption” (SUTVA), in the context of design-based
inference under the potential outcomes model. Thus, for each unit i, the treatment effect is
constant, in the sense that it does not depend on the treatment assignment of other units,
which might be compromised if by communication or learning from other subjects in a study
pool. The response schedule also presumes a treatment effect that is constant across all
units i: β1 is the same for every unit in the study. We further discuss these assumptions of
linear and constant effects across units (and contrast it to the assumption of idiosyncratic
unit effects in the potential outcomes framework) in the next section.11

Finally, models such as equation (3) assume a different kind of constancy assumption:
effects are constant (or homogenous) across components of X. This assumption that has re-
ceived somewhat less attention, yet is critical for understanding the leverage that IV analysis
10 Given a model like equation (3), the unconfoundedness of the instrument and the exclusion restriction are

implied by ϵi ⊥⊥ Zi (Imbens 2014).
11 Heckman and Robb (1986); Imbens and Angrist (1994); Angrist et al. (1996); Rosenzweig and Wolpin

(2000); Freedman (2006); and Heckman et al. (2006) all draw attention to this IV assumption.
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may—or may not—provide. Imagine a researcher who is interested in the effect of income
(Xi) on attitudes toward taxation (Yi). Among participants in a lottery, lottery winnings
(Zi) can be used as an instrument for income. Income (Xi) is the sum of winnings from
the lottery and income from other sources (“earned income”); call these X1i and X2i. The
model in equation 3 assumes that the effect of these two components of Xi are the same.
If this is not the case, then in calculating a 2SLS estimate of β1 we are getting the effect
of a particular type of income shock—specifically, windfall gains X1i (Dunning 2008). We
are not getting the effect of an increase to earned income X2i. Perhaps, then, the model we
should be considering is, in fact, Yi = β0 + β1X1i + β2X2i + ϵi. If β1 ̸= β2 in this equation,
then assuming a constant effect of β1 in equation 3 is misleading. But we cannot estimate
the model with X1i and X2i without another instrument for X2i. Were we to find such an
instrument, concerns about the assumption that β2 is constant across components of X2i

may arise. Dunning (2008) gives additional examples where the possibility of heterogeneous
partial effects in IV models raises concerns about model specification. One way to reduce
concerns of heterogeneous partial effects may be to define concepts more precisely a priori
and limit causal claims to those aspects of a general concept that are actually measured
through the IV analysis.12 The point is that the stipulation of the response schedule is a key
consideration for IV analysis.

If the many modeling assumptions hold—but Xi is endogenous, or statistically depen-
dent on ϵi—and there exists an instrumental variable such that

Zi ⊥⊥ ϵi, (6)

where ⊥⊥ is read as “is independent of,” then the instrumental-variables estimator in equation
(5) consistently estimates β1. This too is a matter of model specification: like the exclusion
restriction, statistical independence of the instrument and the disturbance term implies
that Zi does not belong in the response schedule. If it did, then the response schedule in
Equation (3) would be incorrectly specified. Given the model, however, random assignment
of values of the instrument may imply Zi ⊥⊥ ϵi. The assumption could also hold in a natural
experiment where treatment is merely “as-if” randomly assigned. Yet, the burden is then on
the researcher to demonstrate why Zi might be plausibly uncorrelated in expectation with
pre-treatment causes of Xi and Yi. Sovey and Green (2011) and Dunning (2012), among
others, discuss tests that can be used to assess the validity of this assumption.

Relative to the design-based approach discussed next, the SEM framework adds ad-
ditional complications for assessing the assumption in (6), however. Researchers often use
multivariate IVLS regression—thus, the matrix form of the estimator in equation (4). In
practice, however, they tend to focus on a single endogenous regressor and on whether a
single instrumental variable is as good as randomly assigned; and they include putatively
“exogenous” columns of the matrix X in the matrix of independent variables, Z. Little
attention is typically paid to assessing the assumption that those other columns of Z are
exogenous—that is, as good as randomly assigned—as required for valid estimation by the
2SLS estimator for multiple regression. We return later to discussing these assumptions,
12 To be sure, improving conceptual precision by moving down Sartori’s (1970) “ladder of abstraction" may

lessen the perceived impact of the research: a paper on the effects of windfall earnings on political attitudes
may generate less interest than one that purports to estimate the effect of income more generally.
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after introducing the use of instrumental-variables analysis in design-based analysis under
the potential outcomes framework.

.

2 IV analysis in design-based causal inference
The rise of experimental social science has provided a new use for instrumental variables

as a tool for estimating a complier average causal effect (CACE). When conducting an
experiment, researchers randomly assign units to treatment or control conditions. Interest is
often in estimating the average causal effect (ACE) for the study group of units—that is, the
experimental population. Scholars often stipulate the Neyman potential outcomes model,
also called the Neyman-Rubin-Holland model (Splawa-Neyman et al. 1990; Rubin 1974;
Holland 1986). According to this model, each unit has a potential outcome under treatment,
Yi(1)—i.e., the outcome that would materialize if it were assigned to the treatment group—
and another potential outcome Yi(0) that would materialize if it were assigned to control.
The two potential outcomes cannot be simultaneously observed for the same unit, because a
unit assigned to the treatment group cannot be assigned to control; this is the “fundamental
problem of causal inference” (Holland 1986). Nor can a researcher observe the average of the
potential outcomess under treatment for the experimental population, without losing access
to the average of the potential outcomes under control. In an experiment, however, units
are assigned at random to treatment and control groups. It is as if the treatment group is a
random sample from the experimental population; and the control group is another random
sample from the same population. The mean of the treatment sample can therefore be used
to estimate the average potential outcome under treatment, for all units in the study group;
and the mean of the control sample similarly estimates the average potential outcome under
control. The difference of the means is an unbiased estimator for the average causal effect.

This mode of inference is sometimes called “design-based,” because the only stochastic
element in the model is the random assignment to treatment and control groups—which
is controlled by the researcher as a matter of research design (Cox 2009).13 Scholars have
also used the term more broadly to denote strategies for controlling for confounding vari-
ables that depend centrally on research design—rather than on regression adjustment, as in
standard SEM frameworks (Freedman 2009; Dunning 2012). “Design-based” approaches are
thus sometimes contrasted with “model-based” research, even though models for causal and
statistical inference play a central role in both. The key difference, as we discuss in the next
section, concerns the nature of the assumptions that must be made.

In design-based inference in experiments, the CACE—and instrumental-variables analysis—
enters the picture when some units, despite having been assigned to the treatment condition,
do not actually receive the treatment. Differential take-up of treatment generates a problem
of non-compliance with treatment assignment. Imagine a case where a government offers a
temporary employment program to unemployed citizens; many citizens apply, far more than
the program can fund. The government decides to use a lottery to decide which applicants
may participate. However, not all of those selected ultimately participate. Some have already
13 This usage of “design-based” in statistics differs from a related but distinct use of the term in educational

research.
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located other employment; others may have already migrated elsewhere in search of employ-
ment; and still others may simply lose interest in participating. Similarly, some of those
who were not offered enrollment may ultimately participate, say, if there is is non-take-up
by those originally selected to participate.

With non-compliance, the difference-of-means estimator is “intent-to-treat” (ITT) anal-
ysis: it measures the effect of assignment to the program.14 The effect of treatment assign-
ment on outcomes such as future employment, or political support for the incumbent, may
be of substantial policy as well as scholarly interest. Estimating it could tell us, for example,
the likely marginal returns of offering the program to additional participants. Still, the es-
timator does not readily measure the effect of treatment receipt, i.e., actual participation in
the TEP. The assigned-to-treatment and assigned-to-control groups include non-compliers;
this may “dilute” the effect of treatment assignment. How to estimate the effect of program
participation is not immediately obvious, however. We cannot naively compare those who
received treatment to those who did not: those are self-selected groups, and participators
may differ from non-participators in ways other than exposure to treatment. Put differently,
these self-selected groups contain distinct mixes of compliers and non-compliers, and that
asymmetry may confound valid inference about the effect of treatment receipt.15

Instrumental-variables analysis can assist in the estimation of an average causal effect
among compliers—the CACE. To do so, we extend the potential outcomes model to allow for
non-compliance.16 Thus, we imagine that there are three types of subjects in the study pool:
compliers, always-takers, and never-takers. Under the model, these types are fixed at the
level of the subject; type is not affected by the assignment to levels of treatment. Compliers
are those units who would receive the treatment if assigned to the treatment group—but
otherwise receive the control. Always-takers receive the treatment, and never-takers receive
the control, regardless of their assignment. A fourth type, defiers—who receive the treatment
if assigned to the control group but receive the control if assigned to treatment—are ruled
out; this assumption is required for identification of the CACE (Freedman 2006).17 The
trick is then to separate the responses of compliers, always-takers, and never-takers—in
order to isolate the effect of treatment assignment among compliers. At the unit level, we
often cannot directly observe who is a complier and who is not, as these definitions involve
counterfactuals—that is, potential outcomes (Imbens 2014). For example, among those
assigned to the control group who actually receive the control protocol, we do not observe
whether they would have taken the treatment, had they been assigned to the treatment
group.

However, we can estimate the group-level distribution of compliance types—and the
average responses by type. Imagine first that there are no always-takers: this is a situation
14 As we discuss below, the ITT analysis is equal to the reduced-form estimate discussed above.
15 Relatedly, while manipulation checks can provide a useful measure of whether subjects understood or

experienced the treatment in the way the researcher expected, treatment effects should not be calculated
conditional on having passed a manipulation check, as the check is necessarily post-treatment (Aronow
et al. 2015; Montgomery et al. 2018).

16 See, inter alia, Angrist et al. (1996); Freedman (2006); Gerber and Green (2012); Dunning (2012); Imbens
(2014).

17 Angrist et al. (1996) call the no-defiers assumption “monotonicity”: being assigned to treatment should
never make it less likely that a unit actually receives treatment (see also Imbens 2014: 17).
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of “single crossover” or “one-way non-compliance” (Gerber and Green 2012). In this case, we
can tell which type is which among units assigned to the treatment group: the never-takers
cross over to receive the control protocol, while the compliers receive treatment.18 Thus, we
observe the average responses of the group of compliers in the assigned-to-treatment group.
In the assigned-to-control group, however, the compliers and never-takers look the same:
they both follow the control-group protocol.

Nonetheless, due to random assignment, we can estimate the proportion of each type
in the study group. Indeed, the proportion of each type in the assigned-to-treatment group
is an unbiased estimator for the corresponding proportions in the experimental population,
since the treatment group is a random sample from the whole set of units in the experiment.
In particular, the fraction of compliers in the treatment group—which we can observe in
the case of single crossover from treatment to control—estimates the fraction of compliers in
the experimental population. Moreover, the responses of never-takers in the treatment and
control groups should be the same, in expectation: by assumption, treatment assignment
has no effect on the response of never-takers, since they actually receive the control condition
whether they are assigned to the treatment or the control group. Since we observe the overall
response in the assigned-to-control group, and we impute the response of never-takers from
the assigned-to-treatment group, we can therefore estimate the responses of the compliers in
the control group. The assumption that treatment assignment does not affect the response
of never-takers is akin to the “exclusion restriction” in the SEM framework, as we discuss
further in the next section, though the potential outcomes framework helpfully clarifies the
important distinction between the exclusion restriction and as-if random assignment.

Together, random assignment and the exclusion restriction therefore allow us to es-
timate the responses of the never-takers in the assigned-to-control group—and thus the
compliers. An estimate of the CACE is just the average difference between the assigned-to-
treatment and the assigned-to-control groups—i.e., what ITT analysis gives us—divided by
the estimated proportion of compliers in the study group. The model can also be extended
to the case of two-sided non-compliance (double crossover).19 In this case, we estimate the
proportion of compliers by subtracting the proportion of the assigned-to-control group that
actually receives the treatment from the proportion of the assigned-to-treatment group that
receives treatment. Thus, when treatment assignment is a binary variable (e.g., Xi = 1 when
assigned to treatment, Xi = 0 when assigned to control), we can use the “Wald estimator,”

β̂1,Wald =
Y 1 − Y 0

X1 −X0

, (7)

where Y 1 is the sample average in the assigned-to-treatment group, Y 0 is the sample average
in the assigned-to-control group, X1 is the proportion who receive treatment in the assigned-
to-treatment group, and X0 is the proportion who receive treatment in the assigned-to-
control group. The difference of means in the numerator of (7) is thus “intention to treat”
analysis: it estimates the average causal effect of treatment assignment.20 Note that X1

18 This also assumes we can observe who actually takes the treatment, e.g., who follows the protocol in a
drug trial (which is distinct from the even harder problem of observing counterfactual compliance types).

19 See Freedman (2006); Dunning (2012); Gerber and Green (2012).
20 Numerically, the value is equivalent to the reduced-form regression of Y on Z.
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includes both compliers and always-takers, while X0 includes only always-takers. Effectively,
the denominator subtracts off the proportion of always-takers in the control group from the
joint proportion of compliers and always-takers in the treatment group. Because we expect
the estimated proportion of compliers to be the same across the groups assigned to treatment
and control (due to random assignment), the denominator of the Wald estimator estimates
the proportion of compliers in the full study group.21

Why is equation (7) an instrumental-variables estimator? Numerically, it is equivalent
to a 2SLS procedure in which we regress Y on the fitted values of X, which were obtained
from a first-stage regression of X on Z. Indeed, with one treatment and one control group,
and as we show in the appendix,

β̂1,Wald = β̂1,2SLS, (8)

where β̂1,2SLS is given by equation (5). Conceptually, treatment assignment serves as an
instrumental variable for treatment receipt in a similar sense to that developed in the pre-
vious section: it is correlated with an endogenous variable (treatment receipt), is randomly
assigned, and by assumption does not directly influence outcomes, other than through its
influence on treatment receipt. Indeed, the proof that β̂1,Wald is a consistent estimator for
the CACE depends on both the randomization of the instrument and the stipulation that
treatment assignment does not affect the responses of always-takers and never-takers—a
kind of exclusion restriction.22

The beauty of the Wald estimator lies in its simplicity. If we have two potential
treatment assignments, we can calculate an estimate for the complier average causal effect
knowing only the first-stage difference in means (the numerator) and the estimated pro-
portion of compliers in the study group (the denominator). This simplicity also rests on a
model that seems reliably to capture core elements of the data-generating process: in any
experiment, for example, the physical properties of random assignment of units to treatment
and control groups seem to justify the metaphor of drawing potential outcomes at random
from an urn.

Nonetheless, as in all causal and statistical inference—and certainly as also in the SEM
framework—design-based analysis under the potential outcomes model involves maintained
hypotheses. A key assumption is the response schedule itself. The Neyman model assumes
each unit has potential outcomes—in its simplest formulation, a potential outcome under
control and a potential outcome under treatment. While potential outcomes are free to
vary across units, they are considered fixed, deterministic properties of each unit; and the
treatment assignment of one unit does not affect the response of another. When extended
to account for non-compliance, moreover, the model assumes that units are always-takers,
never-takers, or compliers—but not defiers. And assignment to treatment only affects out-
comes for compliers; the response of always-takers and never-takers is invariant to treatment
assignment. As in the SEM framework, such modeling assumptions merit careful considera-
tion in applications of the design-based approach.
21 This is equivalent algebraically to the first-stage regression of X on Z.
22 Note that Equation (7) suffers from ratio-estimator bias: the denominator is a random variable. How-

ever, by Slutsky’s theorem, the estimator is consistent (asymptotically unbiased); see Freedman (2006) or
Dunning (2012).
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SEM vs. design-based IV: A comparison of assumptions
How, then, does the use of instrumental variables in the SEM framework compare to

design-based approaches? The discussion so far highlights points of convergence—but also
important areas of divergence. We detail similarities and contrasts in the core assumptions
of the models in Table 1. Each row or set of rows in the table includes an assumption in
the SEM framework (first column) and a corresponding or contrasting analogous assumption
in the design-based approach (second column). Fundamental distinctions in the approaches
involve the assumed response schedule; the population for which key estimands are defined;
stipulations on stochastic process; and the manner of formulating validity conditions on
instruments. In boldface, we indicate those assumptions that can be assessed, if at least
partially, with data; we later explain the coding decisions.

First, for SEMs, the response schedule is a linear equation such as equation (3). Thus,
the effect of Xi on Yi is given by the constant of proportionality β. Linear structural equation
models involve assumptions akin to potential outcomes, because the response schedule traces
out counterfactual responses at different values of Xi (Freedman 2009). Yet, the levels of
Xi (or Zi) are not typically directly manipulated, and linearity implies that the response
surface varies smoothly as a function of Xi. By contrast, models in the Neyman tradition
stipulate unit-level potential responses to two or several categorical treatment conditions. In
experiments, assignment to these conditions is directly manipulated by a researcher.

Second, the response schedule under SEM also implies an assumption of a constant
effect across units. By contrast, the design-based approach explicitly allows for treatment
effects to vary across compliance types. This assumed unit-level heterogeneity of effects is
useful because it readily illuminates key assumptions—for example, the idea of monotonicity,
discussed momentarily—which are otherwise buried in the stipulation of common effects
across units in the SEM framework (Imbens 2014: 346). It also allows easy characterization
of varying effects for specific sub-groups, including “local average treatment effects” (LATE)
such as the CACE. This complier average causal effect is less readily characterized in an
SEM model in which effects are presumed constant across units (Sovey and Green 2011).

One apparent point of convergence among the SEM and design-based approaches is
that both appear to stipulate constant effects across components of a treatment. Yet, the
issues this raises, as we discuss later, appear less troublesome for the design-based approach
than in structural equation modeling: that effects are constant across “components” of
treatment assignment in an experiment seems weaker and more plausible, compared to, say,
the assumption that different types of income have the same effect on attitudes (Dunning
2008).

Next, the two approaches further imply different assumptions about the population
for which key estimands are defined. In the design-based approach, the target of inference
is clear: it is the average of potential outcomes under treatment and control (and their
difference), for the set of units in the study group—-also known as the “experimental popu-
lation.” Since this study group is typically (though not always) a convenience sample, there
need be no broader population to which formal statistical inferences are drawn: the ACE
is defined for the experimental population (and effects for sub-groups, such as the CACE,

11



Table 1: SEM vs. design-based IV: A comparison of the assumptions

Structural Equation Modeling Design-based IV

Linear
response
schedule



Linearity in parameters

Constant effect across units
Constant effect across treatment
components
Infinite (or undefined) population

Random disturbance term (i.i.d)

Yi depends on Xi, not Xj ̸=i

Zi does not belong in response
schedule (i.e., Zi ⊥⊥ ϵi and exclu-
sion restriction)

Rank assumptions

Strength of Instrument

Neyman
potential
outcomes



Unit-level potential responses to
categorical treatment conditions
Varying effect across units
Constant effect across treatment
components
Finite experimental popula-
tion
Random sampling of potential
outcomes (not i.i.d)

Non-interference/SUTVA

(As-if) random treatment
assignment
Exclusion restriction

No defiers (monotonicity)

Strength of Instrument

Note: Bolded assumptions indicate those that can be potentially or partially tested from the data.
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are similarly defined in reference to compliers in the study group).23 Thus, in statistical
treatments, the design-based approach is sometimes known as “finite population” analysis.
We code the presence of a finite experimental population as testable in Table 1, but indeed
this is directly observable. This clarity on the target population is not always present in the
SEM approach. To be sure, an equation such as (3) will be fit to data for a particular group
of units; but the equation aspires to a level of generality that does not appear restricted to a
particular set of data. This impression is heightened by assumptions on stochastic process.
In the SEM framework, “Nature” draws random disturbance terms, ϵi in equation (3); in
a classical regression model, these are independent and identically distributed (i.i.d). But
how “Nature” draws error terms at random and with replacement, and from what broader
population, is not clearly articulated. In contrast, the design-based approach assumes that
potential outcomes are fixed in the particular study group at hand. Randomness enters only
in the metaphor of sampling potential outcomes from an urn—i.e., in sampling from this
experimental population. Thus, random assignment to treatment or control groups deter-
mines which potential outcomes are observed. Moreover, these draws from the urn are not
generally i.i.d.: they are made without replacement, and the treatment and control samples
are statistically dependent.

Both approaches require that the outcome for a given individual depends only on
whether that individual received treatment—and not on the assignment of other units. Thus,
under an SEM such as equation (3), Yi depends only on Xi and not on any other unit’s
value of the endogenous regressor, Xj. The design-based framework makes an analogous
stipulation: a unit’s potential outcomes are fixed and do not depend on the treatment receipt
of any other unit. This is “non-interference,” or a component of what Rubin (1978) calls
the Stable Unit Treatment Value Assumption (SUTVA). In the design-based framework,
for example, a common concern is that units that were assigned to receive the treatment
may talk with or otherwise affect units that were assigned to control. The stipulation of
non-interference can be seen as an identifying restriction: if potential outcomes depend
only on a given unit’s treatment receipt, but also on the treatment receipt of other units,
the number of parameters (potential outcomes) in the model multiplies quickly, and this
increases the difficulty of identifying key causal parameters of interest. However, unlike in
the SEM tradition, manipulation of an experimental design can provide the means to test the
existence of such spillovers between treatment and control groups. For example, a researcher
might assign clusters of households to the treatment and control group; but then further
assign individuals at random to treatment and control within the treatment households.
Comparison of the responses of control individuals in the treatment and control households
allows assessment of the presence of spillovers; see, e.g., Nickerson (2008). For this reason, in
Table 1, we code the non-interference assumption as potentially testable in the design-based
approach.

Next, the two approaches differ in their approach to key validity assumptions on the
instrument. The SEM framework assumes that the instrument Zi does not belong in the
response schedule given by equation (3). This, in turn, implies both Zi independent of ϵi—
23 Some work does nonetheless distinguish, not always with clarity, between a sample average treatment

effect (SATE) and a population average treatment effect (PATE), where the study group is itself viewed
as a sample from a broader population.
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as secured by randomization of the instrument—and what we call the exclusion restriction.
Yet SEM does not clearly separate these two assumptions (Imbens 2014: 346), while the
design-based IV approach treats each assumption as distinct. An instrument needs to be, on
the one hand, (as-if) randomly assigned, which allows for a causal interpretation of the first-
stage regression of Yi on Zi (i.e., the ITT) (Angrist and Pischke 2008: 152-153). The second
assumption requires that the instrument only affect the outcome through the endogenous
regressor. This exclusion restriction implies that potential outcomes for a given level of Xi

do not changed based on the value of Zi.24. Angrist and Pischke (2008: 153) use the example
of the Vietnam draft lottery, a “natural” experiment, to illustrate why these two validity
assumptions should be treated as distinct. To serve in Vietnam, young men were randomly
assigned a number based on their birthday; lower numbers were selected first to serve.
The random assignment of draft order fulfills the first validity assumption (i.e., statistical
independence of Zi on ϵi). Yet, being assigned a low draft number might affect the outcome
(i.e., future earnings) not only through the endogenous regressor of interest (i.e., higher
probability of military service), but also through other channels (e.g., enrolling in a university
in hopes of getting a deferment). Compared to the stipulation that Zi ⊥⊥ ϵi in SEMs, the
assumption of as-if random assignment in the design-based approach can be directly if only
partially tested. In addition to a priori knowledge or theory about the randomization process,
this assumption can be assessed using balance and placebo tests, which answer the question
of whether the data are consistent with randomization to treatment conditions. By contrast,
in neither approach (SEM or design-based) can the exclusion restriction be directly assessed.

Note, then, that none of the assumptions of the SEM framework discussed so far can
be readily tested from data. Others, however, must be true in order to calculate the 2SLS
estimator. We refer to these as “rank assumptions” in Table 1. For example, the number
of units, n, must exceed the number of instruments, q, which must also exceed the number
of endogenous covariates, p; also, the matrices Z ′X and Z ′Z must be full rank, p and q,
respectively. In this first section, we referred to these assumptions as “mechanical”: given
particular matrices X and Z, they can be readily tested. We therefore put this item in
boldface in Table 1. More deeply, however, the rank of the matrices also reflects substantive
modeling decisions—such as the exclusion of covariates which might otherwise be included in
X or Z but cannot because if they were, the number of independent variables would outstrip
the number of observations. Thus, identification is accomplished through model specification.
As Freedman (2009: 144) puts it, “Many statisticians frown on under-identified models: if a
parameter is not identifiable, two or more values are indistinguishable, no matter how much
data you have. On the other hand, most applied problems are under identified. Identification
is achieved only by imposing somewhat arbitrary assumptions.”

In the design-based approach, the no-defiers (monotonicity) assumption can similarly
be seen as an identification restriction. Defiers are those who receive the opposite treatment
from the one they were assigned: that is, they receive the control if assigned to treatment,
and the treatment if assigned to control. If there exist defiers, the relationship between
treatment assignment and treatment receipt is non-monotonic. The existence of both defiers
and compliers also means there are more structural parameters than we can estimate from the
24 Both of these assumptions, along with monotonicity and a strong instrument (discussed below), are nec-

essary for valid estimation of the CACE (Angrist and Pischke 2008: 154)
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data. While we can estimate the proportions of compliers; never-takers (i.e., non-compliers
in the treatment group); and always-takers (i.e., non-compliers in the control group), we
cannot estimate the proportion of defiers. Thus, if there are indeed defiers, the IV model
will be under-identified (Freedman 2006: 706). In that case, the Wald estimator in equation
7 does not consistently estimate the complier average causal effect. The no-defier condition
is not directly testable, so we do not bold it in Table 1. Nonetheless, the assumption is
often viewed as one of the more plausible in design-based applications of IV (see, however,
Freedman 2006: 700). Certainly, when defiers constitute a very small proportion of the study
group, identification and estimation issues from violations of the monotonicity assumption
should be limited (Angrist et al. 1996: 451). And certain designs allow for us to dismiss the
monotonicity assumption entirely. In cases of one-sided non-compliance, where researchers
(or governments, nature, etc.) prevent the control group from having access to the treatment,
there are by construction neither always-takers nor, more importantly, defiers.

Finally, both the SEM and potential outcomes approaches require a sufficiently strong
relationship between the instrument(s) and endogenous regressor(s). Because weak instru-
ments explain little of the systematic variation in X, the predicted values of X, or X̂,
approach X. The 2SLS estimator in equation (4) is thus biased in the same direction as
the OLS estimator (Bound et al. 1995). In both approaches to IV, this assumption can be
tested directly from the data by examining the strength of the relationship between X and
Z; see discussion in our first section.

Overall, the discussion in this section suggests several conclusions. First, design-based
approaches to IV tend to be more modest in terms of the underlying assumptions. The
potential outcomes framework relaxes certain assumptions stipulated in the linear response
schedule under SEM (e.g., linearity in parameters, constant effects across units). Moreover,
the target of inference—the average causal effect for a particular study group, or the average
effect for a sub-group of compliers—is readily characterized and estimated; the model does
not presume to extrapolate those effects to units outside the experimental population. Next,
while many IV assumptions under SEM remain implicit in the assumption of the response
schedule, IV analysis under the potential outcomes framework does a clearer job of disaggre-
gating the key assumptions. Finally—as indicated by the greater number of bolded items in
the columns of Table 1—the assumptions of design-based analysis tend to be more directly
testable, for example, by assessing balance on pre-treatment covariates across treatment and
control groups or through modification of design. The next section illustrates these points
through an empirical example.

An illustration: the demand for coffee
How do changes in prices affect demand for coffee? The question recalls those moti-

vating Wright’s original work on IV, in which a key issue is the identification of the demand
curve for agricultural goods. Yet, one could also approach this question experimentally,
by randomly assigning prices to coffee products and assessing how the demand changes in
response. Here, we therefore describe two different approaches to answering this question:
one in the SEM tradition, another in the design-based framework. The example further
illustrates tradeoffs and limitations, as well as areas of convergence between the approaches.
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Thus, as in Wright (1928), one option for studying this relationship would be to find
an instrument that affects demand but not supply. A researcher might seek to use, say,
rainfall as an instrument for coffee prices. Researchers have used rainfall (or deviations from
average rainfall) as an instrument in a variety of settings, for example, estimating the effects
of economic growth on a variety of dependent variables including civil war in Africa (Miguel
et al. 2004) and land invasions in Brazil (Hidalgo et al. 2010). Scholars have also increasingly
used rainfall to estimate the effects of turnout on support for particular parties in the United
States (Hansford and Gomez 2010; Horiuchi and Kang 2018; Fujiwara et al. 2016), Germany
(Arnold and Freier 2016), and Spain (Artés 2014).

Imagine, then, a researcher wants to use changes in rainfall patterns in Uganda to
instrument for changes to world coffee prices. Ultimately, she wants to test whether increased
prices reduce the demand for coffee. Because Ugandan rainfall should only affect coffee
demand through its affect on coffee supply and thus prices, the researcher thinks it might be
a valid instrument. If the researcher were to use rainfall as an instrument to estimate a model
in the form of Equation (3), what assumptions must be met for a causal interpretation?

The key stipulations are found in the first column of Table 1. Each might raise concerns
in this example. We mention only several. The demand schedule might be non-linear—i.e.,
a demand “curve”—rather than proportional to coffee prices. The elasticity of demand
might vary across units, as a function of the availability of substitutes (say, tea), violating
the assumption of constant effects across units. And the assumption of constant partial
effects, according to which the treatment effect does not vary across the components of
the endogenous regressor, might especially suggest issues. In this case, prices can change in
response to a variety of events; for example, changes induced by variation in weather patterns
may have very different effects than price changes induced by a merger between two large
coffee producers.25 Thus, in the rainfall example, we may not be identifying the effect of
price changes generally but rather price changes induced by a particular impetus—rainfall.
Additionally, the assumption that demand in unit i does not depend on the exposure to
coffee prices in unit j may also be suspect: in an interdependent world economy, spillover is
perhaps much more common than non-interference.

Next, concerns might focus on the validity assumptions on the instrument—specifically,
that rainfall does not belong in the response schedule. These validity assumptions entail that
rainfall is independent of the disturbance term in the response schedule linking price changes
to demand and that rainfall only affects coffee demand through price changes. Researchers
may be able to argue that changes to rainfall in Uganda are as good as randomly assigned,
adding credibility to the assumption of Zi ⊥⊥ ϵi. However, the exclusion restriction assump-
tion is considerably more difficult to test. Rainfall may change demand for coffee through
channels other than supply and thus, price. Angrist and Krueger (2001) discuss the possibil-
ity that “sophisticated commercial buyers at the New York Coffee, Sugar and Coca Exchange,
where coffee futures are traded, use weather data to adjust holdings in anticipation of price
increases that may not materialize in fact” (79).26

25 Similar critiques have arisen around the use of rainfall as an instrument for economic growth. Dunning
(2008) suggests that rainfall may induce a very specific type of economic growth that is quite different
from growth induced by, for example, technological change in agriculture or an increase in foreign aid.

26 Research using rainfall as an instrument for economic growth and turnout has often been critiqued with
respect to the exclusion restriction. In the case of Miguel et al. (2004), rainfall may lead to flooding on
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This last point raises a final, empirical question regarding the strength of the instru-
ment: is a change in rainfall patterns in Uganda enough to change world coffee prices? We
could test this assumption using data from rainfall in Uganda and world coffee prices. Do
higher levels of rainfall decrease world coffee prices? An F-statistic greater than 10 in the
regression of world coffee prices on Ugandan rainfall may suggest the latter is a sufficiently
strong instrument. Yet, this rule-of-thumb has weaknesses. The ideal range of rainfall for
coffee production is 45-70 inches per year; less than thirty inches is considered too dry, while
more than one-hundred inches is considered too wet for coffee to successfully grow (Shaw
1955: 278). Thus, we might expect the relationship between rainfall in Uganda and coffee
prices to be U-shaped. The first-stage regression in equation (4) is the linear projection of
X onto Z, however. While non-monotonicity in the relationship between rainfall and prices
may not affect our interpretation of β (Imbens 2014: 346)—given the modeling assumption
of a constant effect—estimating a linear first stage for data that is non-linear may lead us to
dismiss an instrument as weak even if it, in fact, has a strong relationship to the endogenous
regressor.

The example of rainfall-induced variation in coffee prices thus illustrates several chal-
lenges of IV analysis under the SEM framework. Particularly troublesome is the assumption
of correct specification of the linear response schedule, which gives rise to a number of other
assumptions that must be carefully addressed but often cannot be directly tested—and which
are not very clearly illuminated by the model. The design-based approach may provide a
way of addressing some of these concerns a priori. Through robust experimental designs,
researchers can attempt to reduce many of the issues that arise in the SEM framework. This
approach has its own limitations and unverifiable assumptions. A feature and perhaps virtue
of this approach, however, is that limited generalizability is baked into the estimand—rather
than obfuscated by an apparently general structural equation.

Consider, then, the direct experimental manipulation of coffee prices. Drawing partially
on the innovative study of Hainmueller et al. (2014), we imagine a case in which researchers
would like to work with supermarkets to manipulate coffee prices and ultimately derive the
price elasticity of demand for coffee.27 The hypothetical researchers work with one hundred
supermarkets. Managers from fifty of the supermarkets are told to raise their prices while
managers from the other fifty are told to hold their prices constant. The researchers track
coffee sales in the one hundred grocery stores for four weeks and then compare how sales
changed across the treatment and control groups. How might the researchers analyze their
experiment?

One option is intent-to-treat analysis: coffee sales in the fifty supermarkets that were
told to raise prices may be compared with the fifty that were told to keep their prices con-

roads and bridges, making it difficult to transport soldiers and thus decreasing the likelihood of conflict
(Sovey and Green 2011; Dunning 2012). Sarsons (2015) shows that the relationship between rainfall and
conflict in India is strongest in areas downstream of dams, where agricultural income is less susceptible
to rainfall shocks due to access to irrigation. As for research on turnout and party support, Horiuchi and
Kang (2018) demonstrate that weather directly changes voter support for parties, with rainfall making
voters more likely to support Republicans. In fact, most of the benefit obtained by Republicans in rainy
elections can be attributed to voters changing their preferences, rather than differential levels of turnout.

27 Using a randomized control trial with 26 grocery stores in New England, Hainmueller et al. (2014) manip-
ulate both the price and labeling of coffee to understand whether consumers are willing to pay a higher
price for fair trade coffee.
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stant. This approach takes advantage of the element of the design over which the researcher
had most control—the initial randomization of units to treatment and control conditions.
Moreover, it can be analyzed with a simple and transparent difference in means estimator
that relies on relatively weak assumptions. In cases where researchers can engage in extensive
monitoring to reduce non-compliance, as Hainmueller et al. (2014) do, this strategy provides
a robust form of estimating the treatment effect of interest. However, when such monitoring
is not present and/or non-compliance is high, researchers may wish to estimate a complier
average causal effect.

What might non-compliance look like in our hypothetical price-manipulation exper-
iment? Never-takers are defined as those stores that never raise prices; always-takers are
those that always raise prices; and defiers are those that raise prices when told not to raise
and that do not raise when told to raise. The CACE would thus constitute the treatment
effect for stores that raised their coffee prices when instructed to and did not raise their prices
otherwise. Under the potential outcomes framework, we could estimate a CACE using the
ratio in equation (7). What assumptions are required?

A first assumption in valid estimation of the CACE is that the instrument is (as good as)
randomly assigned. In the hypothetical case here, researchers controlled random assignment,
which they can subsequently check using balance tests.28 A second assumption is that
treatment assignment affects the outcome only through treatment receipt. In this case, does
telling a supermarket manager to raise coffee prices affect coffee sales other than through
the actual increase in coffee prices? Perhaps, telling a store to raise coffee prices will result
in the store not only increasing coffee prices, but also lowering tea prices. Or perhaps the
price increase will lead managers to change the placement of merchandise, such that lower
priced coffee is moved to occupy a more visible place in the store. The researchers may send
monitors to check whether coffee prices are actually being changed, which serves as both
a test of the instruments’ strength and also a measure of compliance. However, it would
be difficult if not impossible for the researchers to account for all of the changes made in
response to the coffee price change announcement that might also affect coffee sales. And
finally, we assume absence of defiers, or monotonicity. Is it plausible that there exist stores
in the sample that raise prices when told not to and do not raise prices when told to? It
seems unlikely in this case, although we might imagine some managers might look to defy
an outside researcher who tells them how to control prices in their own store.

Both implicit and explicit in the discussion above are a number of tradeoffs regarding
IV under the SEM and design-based approaches. In the SEM framework, many of the
assumptions are invoked by the response schedule itself. Researchers must carefully justify
ex-post the correct specification of the response schedule, including the assumptions that
follow from it. The design-based approach under potential outcomes allows for a weakening
of the constant unit-level effects assumption but clarifies a new assumption—monotonicity.29

This approach also draws on the potential outcomes framework, which relaxes the assumption
of the linear response schedule and disaggregates the assumptions otherwise implied by
the model into distinct parts. Concerns about these assumptions are addressed through
28 Unlike the analysis, which was performed using store-weeks as units, the balance tests were performed at

the store level, giving a sample size of only 26, which may limit their power.
29 However, as we noted, the assumption of monotonicity exists implicitly in the SEM framework. Allowing

for defiers would imply more structural parameters than can be estimated from the data.
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careful research design; natural and field experiments provide a way to find or develop robust
instruments that are plausibly exogenous and that only affect the outcome through the
endogenous regressor. The design-based approach thus has a number of desirable properties,
which include both the clear statement of and the possibility to test key assumptions.

A key limitation to both approaches, however, involves generalizability of interpreta-
tion, which the coffee demand example illustrates well. Often, instrumental variables analysis
involves an intervention that addresses only one component of the treatment of interest. For
example, it is hard to know exactly what the price manipulation experiment tells us about
the relationship between coffee price and demand. Artificial manipulation of a coffee price
may truly isolate the general effect of interest, but more likely, it tells us about only one
component of a “price” treatment—the actual changing of prices by a store. This change
occurs at the end of the supply chain and tells us little about the result of price changes due
to farming, tariffs, increased fuel prices, etc. The same can be said of using rainfall as an
instrument for coffee price changes. However, in the SEM model, this claim is particularly
muddled by the specification of the linear model, where the researcher is claiming to identify
through Xi in equation (3) the effect of “prices.” In reality, and as discussed above, price
changes induced by rainfall may have a very different effect than price changes induced by
other “interventions.” From this perspective, an advantage of the design-based approach is
then not just the clarity and relative testability of the key assumptions – but that the frame-
work makes clear its limitations. Here, modesty is a virtue: the SEM approach is subject to
the same kinds of weaknesses but because of the lack of specificity embedded in the model
specifications, it tends to overstate its ability to deliver on its ambitions.30

Conclusion
Since Wright’s initial work on supply and demand, social scientists have used instru-

mental variables to study the effects of a number of independent variables that would oth-
erwise be difficult (if not impossible) for the researcher to randomly assign. Some instru-
ments, like rainfall, rely on plausibly exogenous natural variation that affects an endogenous
independent variable of interest. Ramsay (2011) studies as-if random variation in natural
disasters to understand how a country’s level of democracy responds to a change in oil prices.
Other instruments rely on lotteries, where the instrument is—due to actual randomization—
independent of pre-treatment causes of X and Y . Researchers have used the Vietnam draft
lottery as an instrument for military service (Angrist 1990; Erikson and Stoker 2011) and
lottery winnings as an instrument for income (Doherty et al. 2006). While these cases as-
sure that the instrument, Z, is—in expectation—uncorrelated with the disturbance term
from the regression, there remain important concerns about both violations of the exclusion
restriction and the correct specification of the response schedule.

In observational work, challenges often arise to validating the identifying assumptions,
which researchers have shown varying degrees of willingness to acknowledge and address
(see e.g., Sovey and Green 2011: 194 and Staiger and Stock 1997: 597, fn. 2). While
certain assumptions can be directly tested from the data (relevance, rank, identifiability
of parameters) and others may be plausible by design (independence of instrument and
30 For a related point in the context of fixed effects regressions, see Aronow and Samii (2016).
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pre-treatment causes of X, Y ), the remaining assumptions of structural equation modeling
generally raise concerns that often cannot be fully allayed. The exclusion restriction and
specification of the response schedule remain particularly troublesome.

Instrumental variables in the structural equation modeling framework offers a potential
solution to a key problem: identifying the causal effect of X on Y given the stipulation
of a particular structural equation in which the model is presumed but X is assumed to
be endogenous. However, the SEM framework may also prove restrictive; it imposes an
assumption of a linear response schedule that does not allow for estimation of heterogeneous
treatment effects. It further builds monotonicity into the estimand rather than addressing
it as an assumption (Imbens 2014: 346).

The potential outcomes framework overcomes some of these limitations by making more
explicit the underlying key assumptions, which are often more plausible, less restrictive, and
easier to test from the data. Linearity and constant effects assumptions are relaxed under
this approach, and other assumptions, like the exclusion restriction and random assignment
of units to values of the instrument, are directly stated, such that they might be separately
addressed and evaluated. The monotonicity assumption, an added assumption under hetero-
geneous treatment effects, is generally viewed to be plausible, although plausibility should
be judged based on the specific intervention.

Ultimately, despite the promise of instrumental variables, there remain key limitations.
Both the SEM and design-based approaches suffer a common challenge of generating results
that generalize beyond the particular intervention that gave rise to the instrument. Often
instruments affect the independent variable of interest through a specific (and perhaps, nar-
row) channel. Generalizing from that particular component of the treatment to formulating
broader claims should be done only after consideration of other factors that may have in-
duced change in the independent variable. Robust IV analysis thus requires that researchers
consider both the story that can be told from the data given the assumptions and the story
that cannot be told given the inherent difficulties of generalization under the IV framework.
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Appendix
We derive the algebraic equivalence of the two-stage least-squares (equivalently, the

instrumental-variables) estimator in Equation (5) and the Wald estimator of the Complier
Average Causal Effect for a finite population in Equation (7), in the bivariate case with one
treatment and one control group. Here, Yi is the outcome variable; Xi = 1 if unit i receives
treatment and otherwise Xi = 0; and Zi = 1 if unit i is assigned to treatment and otherwise
Zi = 0. The number of units is given by N , and the number of units assigned to treatment
is m < N . Without loss of generality, index the units assigned to treatment by i = 1, . . . ,m
and the units assigned to control by i = m+ 1, . . . , N . Thus, we have

β̂1,2SLS =
Ĉov(Yi, Zi)

Ĉov(Xi, Zi)

=

∑N
i=1(Yi − Y )(Zi − Z)∑N
i=1(Xi −X)(Zi − Z)

=

∑N
i=1(YiZi)− Y

∑N
i=1 Zi − Z

∑N
i=1 Yi +NY Z∑N

i=1(XiZi)−X
∑N

i=1 Zi + Z
∑N

i=1Xi +NXZ
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m

N
)
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=
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=
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(A.1)

The first step uses the definition of the sample covariance; we divide through by n/n. Next,
we multiply out terms, then use the definition of Z = 1 as the units assigned to treatment
(and thus, the sum,

∑
Zi, is m, while the mean, Z, is m/N) and cancel terms. In the

following step, we use the fact that the product, YiZi, will be zero when Zi = 0 and Yi when
Zi = 1. The sum of this product will thus equal the mean outcome for the treated units,
Y1, times the number of treated units, m. The next step uses the fact that the mean, Y , is
simply a weighted average of the mean outcome under treatment, Y1, and the mean outcome
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under control, Y0. The final steps factor out common terms and reduce the equation to the
Wald estimator.
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