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Abstract

Experimental data can be analyzed using the intention-to-treat principle, in which

units randomly assigned to receive treatment are compared to those assigned to con-

trol. In the presence of crossover – for example, when units assigned to the treatment

group are instead subjected to the control regime – intention-to-treat analysis usu-

ally gives a conservative estimate for the effect of treatment. Analysts may therefore

wish to estimate the effect of treatment on the treated, that is, the differential effect of

treatment for units who would receive the treatment if assigned to treatment and the

control if assigned to control. The point we make in this article is that such estimates

are model-dependent, and different models can give very different answers. Issues of

experimental design can also substantially complicate estimation of the effect of treat-

ment on the treated. Intention-to-treat analysis, on the other hand, is the most robust

way to analyze experiments; in many contexts, the intention-to-treat parameter may

also have the most policy as well as social-scientific relevance. We illustrate these

points using data from a field experiment in which election monitors were randomly

assigned to villages in Indonesia.
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1 Introduction

Randomized controlled experiments are increasingly used in political science and related fields.1

The main attraction of experiments is that they solve pervasive problems of confounding and se-

lection bias. In non-experimental studies, groups of units exposed to an intervention or treatment

may be compared to a group of unexposed or control units. However, the groups may be unlike

in ways besides exposure to treatment, and these pre-exposure differences may be responsible for

post-intervention differences across groups as well.

With experiments, by contrast, random assignment ensures that treated and untreated groups

are equivalent prior to the intervention, up to random error. With a large enough number of units,

random error will play only a small role. Post-intervention differences across the treatment and

control groups can then be reliably attributed to the effect of treatment.

A second attraction of experiments, relative to observational studies, is simplicity and trans-

parency. Experiments can always be analyzed according to the intention-to-treat principle, which

measures the causal effect of assignment to treatment or control. With intention-to-treat analysis,

few complicated adjustments to the data are typically necessary, and few assumptions need to be

invoked to draw causal inferences.

Nonetheless, in some settings analysts may believe that the causal effect of assignment to

treatment is not the most relevant parameter. One common source of difficulty in experiments

is crossover: experimental subjects randomly assigned to treatment may be subjected to the con-

trol regime, while those assigned to control may instead receive the treatment. With crossover,

intention-to-treat analysis usually gives a conservative estimate of the effect of treatment.

Analysts may therefore wish to estimate the effect of treatment on the treated, that is, the

differential effect of treatment for units who would receive the treatment if assigned to treatment

and the control if assigned to control. (As discussed below, this estimand is sometimes called the

1See Green (2002) or Gerber and Green (2006) for discussions of the use of experimental methods in political
science.
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effect of treatment on compliers). However, crossover raises issues akin to those raised by obser-

vational studies, since confounding variables may be related to receipt of treatment, as opposed to

treatment assignment. Correcting for crossover may involve complicated adjustments to the data,

and choices are going to be involved in the formulation of the correction.

The point we make in this article is that corrections are model-dependent, and different

models can give very different answers. Common techniques for analyzing experiments with block

randomization, such as instrumental-variables regression with block “fixed effects,” can give esti-

mates that are misleading. In addition, issues of experimental design can substantially complicate

estimation of the effect of treatment on the treated. Where feasible, it is preferable to seek to boost

compliance through appropriate experimental design modifications, rather than through ex-post

adjustment to the data. Intention-to-treat analysis is the most robust way to analyze experiments,

because it involves the purest experimental comparison: that is, between groups randomly assigned

to treatment and groups randomly assigned to control. In many contexts, the intention-to-treat pa-

rameter may have the most policy as well as social-scientific relevance.

We illustrate these points using data from a field experiment in Indonesia, in which in-

ternational election monitors were randomly assigned to observe local polling places during the

2004 presidential election (Hyde 2008). In this experiment, there was substantial crossover from

treatment to control – many locales assigned to election monitoring were not, in fact, visited by

monitors – while there was also some crossover from control to treatment – some villages as-

signed to control were mistakenly visited. There were other technical complications. Random

assignment of observers took place within blocks, and the blocks were of different sizes. Treat-

ment effects were heterogenous across blocks as well as related to block size, and the degree of

crossover varied from block to block. These features of the Indonesia field experiment motivate

several adjustments to the data. As we show in this article, results can be quite sensitive to the

choice of technique.
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2 A field experiment on election monitoring

The 2004 election was the first direct presidential election in Indonesian history. During the second

round runoff, when the incumbent candidate Megawati Sukarnoputri faced her leading challenger

Susilo Bambang Yudhoyono, international monitors associated with the Carter Center were ran-

domly assigned to observe local polling places. The random assignment of election monitors per-

mits the study of several interesting questions (Hyde 2008). For instance, did election monitoring

increase or decrease the incumbent’s vote share?

With approximately 155 million eligible voters, 17,508 islands, and nearly 580,000 polling

stations, randomizing election observers in Indonesia was no small affair. The complexity of the

election monitoring task influenced the design of the experiment in several ways.

First, many areas of the country were inaccessible to international observers on election

day. The universe of the study is not all villages or polling places in Indonesia but rather a set

of villages located within selected districts. In Indonesia, districts are administrative units smaller

than provinces but larger than villages.2

Second, observer teams were assigned by the Carter Center to particular districts, and ran-

dom assignment of villages to election monitoring took place within these districts. Randomization

took place at the village level, because no complete list of polling stations was available from the

central government prior to the election. In all, 20 districts comprising 2165 villages were selected

for inclusion in the experiment, with an average of 109 villages per district. Below, we often refer

to districts as “blocks.”

Third, within villages assigned to monitoring, observers were to select polling stations

at random. While the average village had about 18 polling places, on average observers visited

about 1.4 polling places per monitored village.3 Thus, in this experiment villages were assigned

2There are five administrative levels relevant to elections in Indonesia: provinces, districts, sub-districts, villages
or neighborhoods, and polling stations.

3The average number of registered voters in each village was 5,382. Indonesian law limits polling places to 300
registered voters, implying that on average each village had about 18 polling places.
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to treatment or control, where treatment means that some (though not all) polling places in the

villages were to be monitored.

Finally, the number of villages in the treatment group was substantially larger than the num-

ber of villages that observers expected to be able to visit.4 In consequence, many villages assigned

to monitoring were not, in fact, monitored. Across all 20 blocks (districts), just 19.7 percent of the

482 assigned-to-monitoring villages were actually monitored. This rate varied substantially across

blocks, ranging from a low of 1.5% in West Java to a high of 73.3% in East Java. In addition,

around 1.1% of villages assigned to the control were mistakenly monitored.5 As we discuss below,

these features of the experimental design were far from optimal, and they resulted in substantial

crossover.

The features of this experiment present the researcher with several analytic options. First,

the outcome variable must be identified: are we interested in the causal effect of monitoring on the

number of votes for Megawati in the study population? Or instead a measure of vote share, such

as the number of votes for Megawati divided by the number of registered voters?6

Second, the analyst must reach a decision on weighting. In this experiment, villages were

randomized to treatment and control within blocks (that is, districts). The blocks are of different

sizes, and there is reason to suspect that the effect of monitoring is related to block size. Thus,

estimated treatment effects for each block must be weighted across blocks to arrive at a global

estimator of the effect of monitoring (or assignment to monitoring, as discussed below). One

natural approach is to estimate the effect of monitoring on votes for Megawati, by village, within

each block. The number of villages differs across blocks, however, so we must weight each block-

level effect by the number of villages in the block. The weighted sum of the block-level effects

4The Carter Center had 24 observer teams, each comprised of approximately two observers, and polling places
were only open from 7 AM to 1 PM in each village.

5Some observer teams mistakenly monitored polling stations in villages or neighborhoods assigned to the control
regime, that were located near the border between urban neighborhoods; other teams encountered logistical difficulties
that caused them to choose to visit villages outside of their assigned list.

6We might instead use a measure of vote share such as the number of votes divided by the number of ballots cast
(see Hyde 2008).
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gives the global effect of monitoring on votes for Megawati in the study population; dividing this

sum by the total number of registered voters gives the effect of monitoring on Megawati’s vote

share.7

Finally, as mentioned above, an important feature of this experiment is that there was sub-

stantial crossover: in many districts, only a small fraction of the assigned-to-monitoring villages

were actually monitored, while some villages assigned to the control regime were also mistakenly

monitored. While the experiment can be analyzed according to the intention-to-treat principle,

this is likely to give a conservative estimate of the effect of treatment. We may therefore want to

estimate the effect of treatment on the treated, that is, on compliers: villages that were actually

monitored if assigned to treatment but otherwise were subjected to the control regime. This leads

to a choice of models for adjustment.

In the rest of this article, we discuss intention-to-treat analysis and estimation of the effect

of treatment on the treated. For both estimators, we use the number of villages per block as our

measure of block size, for purposes of weighting treatment effect estimates across blocks. We then

compare these estimators to a common but misleading strategy for analyzing such an experiment

with block randomization, namely, instrumental variables least squares (IVLS) regression with

dummy variables or “fixed effects” for each block. We also discuss alternative, lower-variance

estimators where we weight within and across blocks by the number of registered voters, rather

than the number of villages.

We then turn to some more foundational issues. First, we point out that different experi-

mental design choices could have resolved some of the analytic issues we discuss in this paper,

while at the same time possibly raising others. Then we also raise a philosophy-of-inference ques-

tion, asking what is the most relevant parameter to estimate: intention-to-treat or the effect of

treatment on the treated? In many contexts, we suggest, the intention-to-treat parameter may be

7As we describe below, estimators based on this weighting strategy may be unbiased but inefficient. We therefore
discuss alternative, lower-variance estimators below.
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most relevant.

3 Intention-to-Treat Analysis

Intention-to-treat analysis relies on a simple principle: in a randomized controlled experiment,

units assigned to the treatment group are on average like those assigned to the control group, prior

to the intervention. Three parameters are typically of interest in experiments: (a) the average re-

sponse, if all units were assigned to treatment; (b) the average response, if all units were assigned

to control; and (c), the difference between (a) and (b). Parameter (c) is the intention-to-treat pa-

rameter (which is sometimes called the average causal effect or average treatment effect).

With intention-to-treat analysis, researchers disregard who actually receives treatment. It

can be misleading to compare units that actually receive treatment to the rest of the experimental

population.8 However, randomization ensures that the average response of units assigned to treat-

ment is an unbiased estimate for (a), and the average response of units assigned to control is an

unbiased estimate of (b). Thus, the difference between these two averages is an unbiased estimate

for (c). For further discussion of the intention-to-treat principle, see Freedman (2006).

Here, the intention-to-treat estimator for a given block is votes for Megawati in villages

assigned to monitoring, divided by the number of assigned-to-monitoring villages, minus votes

for Megawati in villages assigned to the control, divided by the number of assigned-to-control

villages. Within a block, in other words, the intention-to-treat estimator is the simple average of

votes for Megawati by village, in the assigned-to-monitoring group, minus the simple average of

Megawati’s votes by village, in the assigned-to-control group.

We must then weight the block-by-block intention-to-treat estimators to arrive at a global

8That is, it may be misleading to compare those who receive treatment to the rest of the experimental population,
including both units originally assigned to control and units assigned to treatment who got the control. In mammog-
raphy trials, for example, there is often substantial noncompliance with the experimental protocol; women who opt to
get screened for breast cancer may be unlike those who do not, in ways that matter for health outcomes (see Freedman,
Petitti, and Robins 2004).
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intention-to-treat estimator for the study population. Here, because blocks have different numbers

of villages, the estimated number of votes gained or lost for Megawati per village must be weighted

by the number of villages in each block. For instance, the weighted sum of the block-level effects

estimates the total number of votes gained or lost due to treatment assignment.

In symbols, for each block j, let MT
i j be votes for Megawati in assigned-to-monitoring

village i = 1, ....,T j and MC
i j be votes for Megawati in assigned-to-control village i = 1, ....,C j.

Here, T j is the number of villages assigned to treatment in block j, and C j is the number of villages

assigned to control.

The intention-to-treat estimator in block j is then

ITT j =

∑T j

i=1 MT
i j

T j
−

∑C j

i=1 MC
i j

C j
. (1)

Equation (1) estimates the difference between the average number of votes for Megawati by village,

if all villages in block j were assigned to treatment, and the average number of votes for Megawati

by village, if all villages in the block were assigned to control. Notice that T j and C j are fixed, not

random, numbers for each block.9

Because blocks have different numbers of villages, we need a weighted sum of the block-

level effects on votes for Megawati per village, where the weights are the numbers of villages.

The block-level effect for block j is given by equation (1). Thus, the total effect of assignment to

monitoring on votes for the incumbent is

ITTtotal votes =

J∑
j=1

(T j + C j)(ITT j), (2)

where J is the number of blocks. We can also estimate the global effect of assignment to monitoring

9The importance of this observation is that, unlike other estimators discussed below, equation (1) is not subject to
ratio-estimator bias.
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on votes for Megawati by village as

ITTvotes per village =
ITTtotal votes∑J

j=1(T j + C j)
. (3)

Finally, the global effect of assignment to monitoring on Megawati’s vote share in the study popu-

lation is

ITTvote share =
ITTtotal votes∑J

j=1 reg j
, (4)

where reg j is the number of registered voters in block j.

Estimation of the variance of these estimators is straightforward. For instance, using equa-

tion (2), the estimated variance of the intention-to-treat estimator for each block j is

v̂ar(ITT j) =
1
T j

1
T j − 1

T j∑
i=1

(
MT

i j − MT
j

)2
+

1
C j

1
C j − 1

C j∑
i=1

(
MC

i j − MC
j

)2
. (5)

Here, MT
j is the mean vote for Megawati in the assigned-to-monitoring villages in block j, and MC

j

is the mean vote for Megawati in the assigned-to-control villages in the block.10 The estimated

variance of the global ITT estimator for votes gained or lost by Megawati across all blocks is then

v̂ar
(
ITTtotal votes

)
= v̂ar

( J∑
i=1

(T j + C j)ITT j
)

=

J∑
i=1

(T j + C j)2v̂ar(ITT j) (6)

The standard error is the square root of (6).11 Variances for equations (3) and (4) are calculated

10With random assignment to treatment and control groups, it is valid to calculate the variance of the difference
of means, (ITT j), as if we had two independent samples, as in equation (5); see, e.g., Freedman, Pisani, and Purves
(1998: 510-13).

11Equation (6) is valid because the ITT effects are independent across blocks (randomization took place within
blocks). Thus, the variance of the sum is the sum of the variances.
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analogously.12

Table 1 reports ITT j, the intention-to-treat estimator for each block (that is, each district).

The final rows of the table then report the three global estimators in equations (2), (3), and (4). Ac-

cording to the point estimates, assignment to monitoring garnered Megawati 223,650 extra votes,

or about 103 votes per village, and raised her vote share by 0.019. With estimated standard errors

of about 146, 653, 68, and 0.013, respectively, however, the intention-to-treat estimates are not

significantly different from zero.

4 Effect of Treatment on the Treated

As mentioned above, there was substantial crossover in this experiment. On average, only 19.7

percent of the villages assigned to monitoring were in fact monitored. In addition, about 1.1

percent of the assigned-to-control villages were mistakenly monitored by election observers. With

a high degree of crossover from the treatment to the control arm, intention-to-treat analysis is

likely to give a conservative estimate of the effect of treatment on the treated. After all, only a

relatively small fraction of the villages assigned to the treatment group were actually exposed to

the treatment.

In this section, we discuss estimation of the effect of treatment on the treated (ETT), that

is, the differential effect of treatment on villages that are monitored if assigned to monitoring but

12For equation (3), the formula is

v̂ar
(
ITTvotespervillage

)
=

var
(
ÎTTtotal votes

)(∑J
j=1 T j + C j

)2 .

Similarly, for equation (4), the formula is

var
(
ÎTTvoteshare

)
=

var
(
ÎTTtotal votes

)(∑J
j=1 regj

)2 ,

where regj is the number of registered voters in block j.
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Table 1: Votes for Megawati: Estimated Intention-to-Treat (ITT) Effects, by Block

Block (district) Number of villages (Tj,Cj) ITT
(votes gained or lost per village)

1. Kota Banda Aceh 90 (19, 71) -0.9
2. Kota Surabaya 163 (34, 129) 899.8
3. Kota Mataram 23 (11, 12) 206.0
4. Sampang 186 (41, 145) 166.8
5. Tabanan 117 (27, 90) 186.0
6. Situbondo 136 (32, 104) 573.2
7. Kota Yogyakarta 45 (20, 25) 96.8
8. Kota Kediri 46 (15, 31) 682.6
9. Kota Medan 156 (30, 126) -29.3
10. Kampar and Kota Pekan Baru 243 (53, 190) 30.2
11. Kota Samarinda 42 (8, 34) -132.4
12. Cianjur 343 (68, 275) -44.1
13. Kota Palangka Raya 31 (6, 35) -203.6
14. Kota Pontianak 24 (9, 15) -1,162.4
15. Kota Padang 103 (20, 83) 95.6
16. Palembang 103 (20, 83) -187.1
17. Kota Bitung 60 (12, 48) -120.3
18. Kota Ternate 52 (11, 41) 32.2
19. Kota Ambon 56 (18, 38) -636.2
20. Kota Makassar 146 (28, 118) 58.4

ITTtotal votes 2165 (482, 1683) 223,649.6
(s.e.) (146,652.5)

ITTvotes per village – 103.3
(s.e.) (67.7)

ITTvote share – 0.019
(s.e.) (0.013)

that are not monitored if assigned to control.13 In medical trials, such experimental units are called

“compliers;” thus, what we term the effect of treatment on the treated is sometimes called the effect

of treatment on compliers.14

13Sometimes, the effect of treatment on the treated denotes the effect of treatment on both compliers and “always
treats” (Freedman 2006), that is, units that receive treatment whether assigned to treatment or control.

14When there is one treatment condition and one control condition, the effect of treatment on compliers corresponds
to what Imbens and Angrist (1994) call the Local Average Treatment Effect (LATE) (see also Angrist, Imbens and
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The estimation of the ETT in this experiment raises several analytic issues. First, random-

ization occurred within blocks, so we must calculate the ETT separately for each block, just as

we did for the ITT above. The global estimator is then a weighted average of the block-by-block

estimators, as above. In this section, we use the number of villages as weights, just as we did for

the ITT; below, we discuss an alternate weighting strategy.

Second, while there was high crossover on average, there was also substantial variance

across blocks; the percent of assigned-to-monitoring villages that were actually monitored runs

from 1.5% to 73.3% across blocks. The low rate of compliance in some blocks implies that the

ITT and the ETT diverge sharply in these blocks. Finally, both treatment effects and the rate of

compliance appear related to block size. As we show below, these features of the experiment lead

to marked contrasts between the global ITT and ETT estimators, suggesting that substantive results

may be strongly influenced by the choice of analytic technique.

4.1 The ETT estimator

Within a given block, the ETT estimator is the intention-to-treat estimator, divided by the fraction

of assigned-to-treatment villages that were actually monitored minus the fraction of assigned-to-

control villages that were monitored. In symbols, the effect of treatment on the treated in block j

is

ETT j =
ITT j

α j − β j
(7)

Here, α j is the fraction of assigned-to-monitoring villages that are actually monitored in block j,

while β j is the fraction of assigned-to-control villages that are mistakenly monitored in that block.

The intention-to-treat estimator ITT j in the numerator of equation (7) is given by equation (1).

Equation (7) estimates the effect of monitoring on votes for Megawati per village in block j, for

villages that are monitored if assigned to monitoring and not monitored if assigned to control. For

Rubin 1996; Angrist and Krueger 2001). In other contexts, the ETT and LATE may diverge.
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further discussion of this estimator, see Freedman (2006).

Now, we must weight the ETT by the number of villages in the block to arrive at a global

ETT estimator. For instance, the effect on votes for Megawati in the study population is

ETTtotal votes =

J∑
j=1

(T j + C j)(ETT j), (8)

where J is the number of blocks. We can also estimate the global effect of monitoring on votes for

Megawati by village, for compliers, as

ETTvotes per village =
ETTtotal votes∑J

j=1(T j + C j)
. (9)

Finally, the global effect of assignment to monitoring on Megawati’s vote share in the study popu-

lation is

ETTvote share =
ETTtotal votes∑J

j=1 reg j
, (10)

where reg j is the number of registered voters in block j.

Table 2 reports the block-by-block estimator ETT j for each of the 20 blocks, as well as

the global estimators given by equations (8), (9), and (10). The global ETT estimators sharply

diverge from the global ITT estimators reported in Table 1. For instance, while the total effect of

assignment to monitoring on votes for the incumbent is estimated at 223,649.6 votes, the ETT for

votes for Megawati in the study population is -2,717,560. In this experiment, in other words, the

point estimate of the global ITT is very large and positive, while the global ETT is very large in

absolute value and negative.

Why do the global ETT estimators in equations (8), (9), and (10) differ in sign from the

global ITT estimators in equations (2), (3), and (4)? Within a block, the ITT and the ETT estimators

must have the same sign: see, for instance, equation (7).15 In this experiment, however, treatment

15This assumes that the fraction of villages monitored in the assigned-to-monitoring group is larger than the fraction
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Table 2: Votes for Megawati: Estimated Effects of Treatment on the Treated (ETT), by Block
Block (district) α j, β j ETT

(votes gained or lost per village)
1. Kota Banda Aceh 3

19 ,
1

71 -6.0
2. Kota Surabaya 3

34 ,
0

129 10,198.2
3. Kota Mataram 4

11 ,
0

12 566.6
4. Sampang 5

41 ,
0

145 1,367.9
5. Tabanan 6

27 ,
0

90 837.1
6. Situbondo 10

32 ,
0

104 1834.4
7. Kota Yogyakarta 4

20 ,
0

25 484.1
8. Kota Kediri 11

15 ,
0

31 930.8
9. Kota Medan 5

30 ,
2

126 -194.1
10. Kampar and Kota Pekan Baru 5

53 ,
0

190 320.1
11. Kota Samarinda 4

8 ,
2
34 -300.1

12. Cianjur 1
68 ,

3
275 -11,617.0

13. Kota Palangka Raya 1
6 ,

4
35 -30,541.0

14. Kota Pontianak 4
9 ,

3
15 -4,755.5

15. Kota Padang 4
20 ,

1
83 508.6

16. Palembang 11
20 ,

1
83 -347.8

17. Kota Bitung 3
12 ,

4
48 -721.8

18. Kota Ternate 5
11 ,

1
41 74.8

19. Kota Ambon 4
18 ,

1
38 -3,247.6

20. Kota Makassar 2
28 ,

2
118 1,072.0

ETTtotal votes
95

492 ,
25

1683 -2,717,560
(s.e.) (5,040,584)

ETTvotes per village – -1,255.2
(s.e.) (2,328.2)

ETTvote share – -0.233
(s.e.) (0.433)

effects are heterogenous across blocks: in some blocks, the ITT and ETT estimators are positive,

while in others they are negative (see Tables 3 and 4.1). Moreover, some large blocks have negative

but relatively moderate ITT estimates, while they have very negative ETT estimates; this can occur

of villages monitored in the assigned-to-control group, as it is in this experiment: that is, α j > β j ∀ j.
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when the fraction of villages that are monitored in the assigned-to-monitoring group is very low.16

Not only are the ETT estimates very negative for such blocks, but such blocks receive a large

weight in the global estimators, due to their size. Thus, while the weighted averages of the ITT

estimators are positive, the weighted averages of the ETT estimators are negative.

Note that the ETT estimator in equation (7) is a ratio estimator and is subject to ratio-

estimator bias, because the numerator and denominator of the estimator are both random: for

instance, the number of villages actually monitored in the assigned-to-monitoring villages, and the

number monitored in the assigned-to-control villages, are random variables. See Freedman (2006:

709) for discussion. Here, the degree of bias is likely to be small, and more appreciable for the

assigned-to-treatment villages than the assigned-to-control villages.

Aside from bias, ratio estimators raise issues for the estimation of variance. With a large

number of units, the delta method can be tried; however, here the number of villages in each

block is often quite small.17 We obtained jackknifed estimates for the variances, but the estimates

are unreliable, due to the small sample size and the low contact rate.18 The standard errors for

the global ETT estimators reported in Table 4.1 are obtained by instrumental-variables regression

within blocks; nominal variances for the coefficient estimates are then pooled across blocks using

formulas akin to equation (6).19 The asymptotics for the nominal variances do not necessarily hold,

16For instance, Table 1 reports an ITT estimate of -44.1 votes for block 12 (Cianjur), while Table 2 reports an ETT
estimate of -11, 617 for the same block. This in turn occurs because the fraction of assigned-to-monitoring villages
that are actually monitored is very low: α = 1

68 or about 0.0147, while β = 3
275 or about 0.0109. The denominator of

equation (7) is thus 0.0038 for this block.
17The delta method relies on a first-order Taylor series approximation; see Freedman (2008b).
18For the jackknife, within each block, we dropped the ith village and calculated equation (7) to get the ith pseu-

doreplicate; we did this for i = 1, ..., n. The “jackknife variance” is the sum of the squared deviations from the mean
of the n pseudoreplicates, multiplied by n

n−1 and by a finite-sample correction factor (1 − f ), where f is the sampling
fraction (the fraction of villages assigned to monitoring). Most of the variance in the ETT estimator comes from the
treatment group, which typically has far fewer villages than the control group; for purposes of jackknifing the vari-
ance, votes for Megawati and the fraction of monitored villages in the control group were held constant at their sample
values. Within-block variances were then pooled across blocks, using a formula similar to equation (6). For discussion
of the jackknife, see Freedman (2000).

19Within blocks, we regress votes for Megawati on an intercept and a dummy variable that equals one if the vil-
lage was monitored; we instrument by assignment-to-monitoring. Within blocks, the coefficient of this instrumental-
variables least squares regression is the within-block ETT estimator; see section 5.
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however, and other issues arise (see Freedman 2008a).

4.2 Pooling into “superblocks”

The global ETT estimates reported in Table 2 are highly sensitive to outliers. For instance, if we

drop only block 2 from the data set, the global ETT estimates remain highly negative; if we drop

only block 12, the global ETT estimates are highly positive, while if we drop both blocks 2 and 12,

the global ETT estimates are again large and negative. In addition, the variance of the within-block

estimators, and thus of the global estimators, is very large.

This sensitivity to outliers and large variance of estimators is due to the experimental de-

sign. In this experiment, there were several very large blocks in which very few assigned-to-

monitoring villages were actually monitored; for such blocks, for instance blocks 2, 12, and 13,

the denominator of equation (7) is very small, relative to the numerator (that is, relative to the ITT

for that block), and thus the absolute value of the ETT is large. These blocks are influential not

only because the ETT is large in absolute value, but also because the blocks are large: thus, they

receive large weights in the global ETT estimators given by equations (8), (9), and (10). The fact

that the number of villages assigned to monitoring and especially the fraction of such villages that

were actually monitored is very small, in some blocks, boosts the variance of the within-block ETT

estimators.

These features of the experimental design were far from optimal from the point of view of

causal inference. Force was dispersed all over the map: each team of electoral observers could only

visit several villages on election day, and generally one team was assigned to each block. Among

other effects, this greatly increased the variance of ETT estimates within blocks. Moreover, some

teams of observers visited numerous control villages, due to logistical and transportation issues,

or because they were resistant to the idea of only visiting villages in the assigned-to-monitoring

group. We further discuss features of the experimental design below.
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For illustrative purposes, it makes sense to create a new data set by pooling blocks into

larger “superblocks,” which will limit the sensitivity of our analyses to outliers; we will use this

new data set for purposes of comparing the ETT with a different estimator below. We selected

blocks to pool by focusing on blocks with low α j and then merged blocks with similar average

values of votes for Megawati by village. This pooling process created ten “superblocks,” each with

substantially higher values of α j (and lower values of β j) than in the previous analysis. Using this

new pooled data set, we then recalculated the various ETT estimators in equations (7), (8), (9), and

(10). While not necessarily the best approach for all purposes, and while other combinations of

blocks are possible, the new data set created by the pooling creates a fairer basis for comparison of

the ETT estimators presented in this section and the alternative estimators we discuss below.

Table 3 presents the ETT estimate for each block in the pooled data set, along with the

global ETT estimates reported in the previous table. The global ETT estimates are now positive,

though still smaller than the global ITT estimates. As before, this is due the influence of large

blocks with negative ETTs; within blocks, as the entries in the table suggest, the ETT will have the

same sign and a larger absolute value than the ITT (see equation7).20 Again, the weighting matters

greatly: we must weight the block-level treatment effects by the number of villages in each block.

20Again, this assumes that a greater fraction assigned-to-monitoring villages are actually monitored than assigned-
to-control villages.
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Table 3: Votes for Megawati: ITT and ETT, pooled “superblocks”
Block (district) ITT α j, β j ETT
1. K. Banda Aceh, K. Makassar 24.7 5

47 ,
3

189 272.8
2. Kampar and K. Pekan Baru, K. Padang 50.1 9

73 ,
1

273 418.5
3. Sampang, K. Ternate 143.8 10

52 ,
1

186 769.4
4. Cianjur, K. Bitung -56.2 5

80 ,
7

323 -1982.1
5. K. Palangka Raya, K. Pontianak -209.8 5

15 ,
7

50 -1,324.8
6. K. Kediri, Palembang -75.3 22

35 ,
1

114 -121.5
7. K. Mataram, Tabanan 207.0 10

38 ,
0

102 786.5
8. K. Yogyakarta, K. Samarinda 23.1 8

28 ,
2

59 91.8
9. Situbondo, K. Medan 212.9 15

62 ,
2

230 913.0
10. K. Yogyakarta, K. Samarinda 131.9 7

52 ,
1

167 1,025.6

ITTtotal votes 134,048.4 ETTtotal votes 111,835.1
(s.e.) (153,238.6) (s.e.) (155,669.8)

ITTvotes per village 61.9 ETTvotes per village 51.7
(s.e.) (70.8) (s.e.) (71.9)

ITTvote share 0.012 ETTvote share 0.010
(s.e.) (0.013) (s.e) (0.014)

5 Instrumental-variables regression with block “fixed effects”

The ETT estimator in equation (7) is an instrumental-variables estimator. Suppose we regress

votes for Megawati, by village, on an intercept and a dummy variable Ti, which equals one if the

village was visited by election monitors and zero otherwise. Using a dummy variable for treatment

assignment (whether a village was assigned to monitoring or not) as an instrumental variable for

Ti, the instrumental-variables least squares (IVLS) estimate of the coefficient on Ti will coincide

with the ETT estimator given by equation (7), within each block.21

However, a common approach to analyzing such experimental data using instrumental vari-

21See Freedman (2006) for a relevant theorem.
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ables least squares (IVLS) regression is misleading. In this section, we describe this alternate IVLS

technique and contrast it with the global ETT estimators discussed in the previous section. Using

both our original and the “pooled” data set discussed above, we show that this alternate technique

produces estimates that are markedly different than the global ETT estimators discussed above.

The common approach to analyzing an experiment with block randomization is the follow-

ing. The analyst supposes that the response of each village to treatment – that is, being visited by

a team of election monitors – is described by the regression equation

Mi j = α j + βTi j + εi j. (11)

Here, Mi j is votes for Megawati in village i in block j. On the right-hand side of the equation, β is a

regression coefficient, and Ti j is a dummy variable that equals one if village i in block j was visited

by election monitors, and zero otherwise. The intercept α j is a “fixed effect” for block j. Under the

assumptions of the model, the random error term εi j is independently and identically distributed

(i.i.d.) across villages, with E(εi j) = 0. Here, however, Ti j may be dependent on the error term,

that is, endogenous: in this experiment, for instance, election observers were able to choose which

villages to monitor, and their choices may be related to unmeasured factors correlated with votes

for Megawati. While the Ordinary Least Squares (OLS) estimator of equation (11) will therefore be

biased, random assignment of villages to monitoring may provide a valid instrumental variable.22

Then, under the assumptions of the model, Instrumental Variables Least Squares (IVLS) regression

may then provide a way to obtain consistent parameter estimates of β.

Estimation of equation (11) is misleading, however. Consider first the inclusion of the

block-specific fixed effect, α j, in the equation. In this experiment, randomization occurred within

blocks. The baseline number of votes for Megawati also varies across blocks. Analysts may reason

22Let Zi j = 1 if village i in region j is randomly assigned to treatment and Zi j = 0 if the village is assigned to
control. The random variable Zi j is a valid instrumental variable if Cov(Zi j,Ti j) , 0, and if it is independent of the
random errors. In symbols, Zi j y εi j for all i and all j, where A y B means “A is independent of B.”
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that including a dummy variable for each block in the regression captures the different baseline

votes for Megawati across blocks, so that the regression coefficient β gives the differential effect of

monitoring on Megawati’s village-level vote within blocks.23

However, as we saw above, in this experiment the blocks are different sizes. Treatment

effects are heterogenous across blocks and also related to block size. The “simple average” effect

of monitoring on Megawati’s vote by village, within blocks, is thus of limited interest, because

this effect varies across blocks, and the blocks have different sizes. Just as the simple average of

block-by-block ETT estimators is misleading for purposes of estimating the effect of treatment on

the treated in the global study population (compare Tables 1 and 2), estimating equation (11) by

IVLS without weighting for the different sizes of blocks will lead to misleading results.

Table 4 reports IVLS estimates of equation (11), using both the original data set, with

20 blocks (first column of the table) and the pooled data set with ten “superblocks” discussed

in the previous section (third column). As the table shows, the IVLS estimates differ markedly

from the global ETT estimates reported above. Most dramatically, while the ETT estimator of

equation (ETTvotespervillage), using the original data set, is -1,255.2, the IVLS estimator of the

β in equation (11) is 576.6. In other words, while the ETT suggests a highly negative effect of

monitoring on votes for Megawati; the unweighted instrumental variables estimator, with block

fixed effects, suggests a highly positive effect.

A similar if less dramatic discrepancy persists when we use the pooled data set described

in the previous section. According to the global ETT estimator using the pooled data, monitoring

cost Megawati an estimated 51.7 votes per village (see Table 3). On the other hand, the IVLS

estimator of β in equation (11), using the pooled data, is 353.7. Even using the pooled data, then

– which makes for a fairer comparison between the two estimators – the IVLS estimator is larger

than the global ETT estimator by a factor of 6.8.

Again, the reason for this discrepancy is that the global ETT estimator presented in the

23This could be valid, if blocks were of the same size or if treatment effects were homogenous across blocks.
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previous section weights the block-level treatment effects by a measure of block size, that is, the

number of villages in the block. Because blocks differ in size and treatment effects are heteroge-

nous across blocks, this weighting is crucial for purposes of estimating global treatment effects

for the whole study population. Simply including dummy variables for the blocks in an IVLS

regression is inadequate.

Table 4: Votes for Megawati: Instrumental Variables Least Squares (IVLS) regression
Original data Pooled data

Coefficient estimates Coefficient estimates
(standard errors) (standard errors)

Monitored (Ti j) 576.6 460.5 353.7 280.4
(348.1) (302.8) (367.5) (307.3)

Ln Registered Voters – 720.8 – 741.2
– (28.2) – (24.7)

Finally, another fairly common approach to analyzing these experimental data is to include

covariates, as in the following regression equation:

Mi j = α j + βTi j + Xi jγ + εi j. (12)

Here, the 1 × p row vector Xi j includes covariates, and γ is a p × 1 column vector of regression

coefficients; other notation is as in equation (11). The rationale for including covariates may

be to reduce the variance of the estimate of β. However, while the covariates in Xi j should be

independent of Zi j, due to the randomization, they are not necessarily independent of either Ti j or

εi j. For starters, then, the non-independence of εi j and Xi j implies that the row vector [Zi j Xi j] will

not be exogenous and thus instrumental-variables estimation of equation (12) will not be valid. For

these and other reasons, adding covariates in regression analyses of experimental data may not be

well-advised (see Freedman 2008).

In the second and fourth columns of Table 4, we add a scalar covariate to the previous
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specification; we use the natural log of the number of registered voters as the covariate.24 The

IVLS estimator of β in equation (12) is 280.4, which differs from the global ETT estimator in

Table 4.2 by a factor of more than four.

6 Alternative estimators

Before turning to more foundational issues of experimental design and causal inference, we discuss

a final set of estimators. Section 5 suggests that a common strategy for analyzing experiments with

block randomization, using IVLS regression, can be highly misleading; the global ETT estimators

provide a more sensible approach. However, both the ITT and ETT estimators discussed above

may be inefficient. In this section, we discuss alternative estimators that may have lower variance.

6.1 ITT: Weighting by Registered Voters

Consider first equation (1), which is the intention-to-treat estimator for Megawati’s votes by village

within a block. The estimator is the sum of Megawati’s votes in assigned-to-monitoring villages,

divided by the number of villages assigned to monitoring, minus the sum of Megawati’s votes

in assigned-to-control villages, divided by the number of villages assigned to control. Villages

vary greatly in size in the study population, ranging from a low of 35 registered voters to a high

of 59,567.25 Assignment of a very small or very large village to treatment can greatly vary total

votes for Megawati in the treatment group, particularly when the number of villages assigned to

monitoring is small. The sum of Megawati’s votes in assigned-to-monitoring villages, which is a

key component of equation (1), may therefore be highly variable.

24The rationale may be that we are adjusting for differences in village size. However, while village size is balanced
across the assigned-to-monitoring and control groups, in expectation, within blocks, average village size may differ
across blocks.

25The variation is also large within blocks: in block 9 (Kota Medan), for example, the smallest village has 30
registered voters, while the largest has 30,806.
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In contrast, Megawati’s vote share – votes for Megawati divided by the number of regis-

tered voters, by village – may be substantially more stable across villages, within a block. This

fact suggests an alternative, possibly more efficient estimator for the effect of assignment to moni-

toring. In this section, we discuss this alternative estimator, which though biased may have lower

mean squared error than the ITT estimators discussed above.

Within a block, this alternative estimator is the total number of votes for the incumbent

candidate, Megawati, divided by the total number of registered voters, in villages assigned to be

monitored, minus total votes for Megawati divided by total registered voters, in villages assigned

to control.26 In symbols,

ITTA
j =

MT
j

regT
i

−
MC

i

regC
i

. (13)

where ITTA
j stands for the alternative (“A”) intention-to-treat estimator for block J. Here, MT

j is the

number of votes for Megawati in the assigned-to-monitoring villages, in block j, and regT
i is the

number of registered voters in the assigned-to-monitoring villages in the block; MC
j is the number

of votes for Megawati in assigned-to-control villages and regC
j is the number of registered voters

in the assigned-to-control villages, both in block j.27

Notice that equation (13) gives the difference across the assigned-to-monitoring and assigned-

to-control groups in the the weighted average of the vote share by village, within a block, where

villages are weighted by the number of registered voters. The difference between equations (1) and

(13) is that in the latter, votes for Megawati in the assigned-to-monitoring and assigned-to-control

villages are divided by the number of registered voters, not the number of villages.

Now, as above, we must weight the block-by-block ITT estimators by a measure of block

size. Equation (13) estimates the effect of assignment to monitoring on Megawati’s vote share –

26Note that for both groups, the total number of registered voters divided by the total number of registered voters is
the same as the weighted average of Megawati’s vote share by village, where the weights are the number of registered
voters.

27The estimand is Megawati’s vote share – that is, the total number of votes for Megawati divided by the number
of registered voters – if all villages in the block were assigned to be monitored, minus Megawati’s vote share if all
villages were assigned to control.
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that is, votes over registered voters – for block j; thus, the appropriate measure of block size for

purposes of weighting across blocks is the number of registered voters in the block, rather than the

number of villages. Thus, here the global intention-to-treat estimator for votes for Megawati is

ITTA
total votes =

20∑
j=1

reg jITT j, (14)

where ITT j is the intention-to-treat estimator for block j, and reg j gives the number of registered

voters in block j. Note that like equation (2), equation (14) estimates the effect of assignment to

treatment or control on total votes for Megawati. Other estimators are defined analogously. For

instance, the global intention-to-treat estimator for the vote share is

ITTA
vote share =

ITTA
total votes∑J

j=1 reg j
, (15)

which, like equation (4), estimates the effect of assignment on Megawati’s total vote share in the

study population.

Table 5 reports estimated intention-to-treat effects for each of the blocks in the study, along

with the number of registered voters in each block; here, we use the original rather than the pooled

data set.28 These block-by-block estimators are then weighted to arrive at the global ITT estimator

given by equation (15). As shown in the final row of Table 5, the global ITT estimate is 0.7%.

Unlike the ITT estimators discussed in section 3, equation (13) is subject to ratio-estimator

bias, and thus so are equations (14) and (15). Note that the numerator and denominator of equation

(13) are both random: for instance, the numbers of registered voters in the treatment and control

groups are random variables. Again, however, the degree of bias is likely to be small, and more

28Inspection of Table 5 suggests that treatment effects are related to block size. In fact, the estimated ITT effect is
negatively correlated with the number of registered voters, by block, at -0.26. This is why it is important to weight the
block-by-block ITT estimators by block size. Notice that the simple average of the block-level ITT effects in Table 5
is 0.012, which is non-trivially different from the valid estimated global intention-to-treat effect of 0.007 shown in the
last row of the table.
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Table 5: Estimated Intention-to-Treat (ITT) Effects, by Block
Block (district) Registered Voters ITT

(increase or decrease in vote share)
1. Kota Banda Aceh 173,265 0.007
2. Kota Surabaya 2,078,486 0.009
3. Kota Mataram 241,483 0.019
4. Sampang 569,216 0.065
5. Tabanan 325,701 0.009
6. Situbondo 488,633 0.074
7. Kota Yogyakarta 327,873 0.026
8. Kota Kediri 200,137 0.059
9. Kota Medan 1,525,526 -0.008
10. Kampar and Kota Pekan Baru 740,924 0.013
11. Kota Samarinda 453,693 0.008
12. Cianjur 1,378,863 -0.013
13. Kota Palangka Raya 123,596 0.027
14. Kota Pontianak 371,780 -0.013
15. Kota Padang 525,422 -0.005
16. Palembang 906,169 -0.017
17. Kota Bitung 120,637 -0.025
18. Kota Ternate 95,771 -0.009
19. Kota Ambon 192,097 -0.050
20. Kota Makassar 812,977 0.005

ITTvote share 11,652,249 0.007
(s.e.) (0.0023)

appreciable for the treatment villages than the control villages. On the other hand, the estimators in

equations (14) and (15) should have lower variance than their counterparts in equations (2) and (4)

and in consequence may have lower mean squared error. Because the assigned-to-treatment groups

are reasonably large, the jackknife will be more reliable than for the ETT estimator discussed in

section 4; we estimate the standard errors using a procedure analogous to the one outlined in a note

above.

Using the lower-variance estimation procedure discussed in this section, the global ITT

estimate is positive and significantly different from zero at standard levels. Thus, the analysis

suggests a small, positive, and statistically-significant effect of assignment to treatment or control
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on the incumbent’s vote share: on average, intention-to-treat by election monitoring slightly helped

Megawati in the presidential runoff of 2004.

6.2 ETT: Weighting by Registered Voters

As in section 3, the ITT estimator discussed in the previous sub-section is again likely to give a

conservative estimate of the effect of election monitoring, due to crossover. Across the study pop-

ulation, just 23.6 percent of registered voters in villages assigned to monitoring had their villages

actually visited by election monitors, while 3.3 percent of registered voters in villages assigned

to control had their villages monitored. In this subsection, we therefore discuss estimation of the

effect of treatment on the treated – that is, the effect of treatment on villages that are monitored if

assigned to monitoring and are not monitored if assigned to control – under the alternative weight-

ing procedure discussed in this section.

Using the notation in equation (13), let ITTA
j be the alternate ITT estimator for block j.

Denote the fraction of registered voters in the assigned-to-monitoring group who reside in villages

that are actually monitored as XT
j ; denote the fraction of registered voters in the assigned-to-control

group who reside in villages that are (mistakenly) monitored as XC
j . Then the alternate ETT esti-

mator for block j is

ˆETT
A
j =

ITTi

XT
j − XC

j

(16)

Table 6 reports the ETT estimator in equation (16) for each block.

Just as with the global ITT estimators, calculating the global ETT estimators requires a

weighted average of the block-by-block ETT estimators; here, the weights are the numbers of

registered voters in each block. For instance,

ETTA
total votes =

20∑
j=1

reg jETTA
j , (17)
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and

ETTA
vote share =

ETTA
total votes∑20

j=1 reg j
. (18)

The weighted average in equation (18) gives a global ETT estimator of -0.103 for the vote

share (final row of Table 6).29 For the ETT, the jackknifed estimator of variance is likely to be un-

reliable, due the small size of the assigned-to-monitoring group and especially the low compliance

rate; we therefore use the procedure outlined in section 4, pooling within-block nominal SEs from

the bivariate IVLS regression. Here, for example,

v̂ar
(
ITTvote share

)
=

∑20
j=1(reg j)2var(ETTA

j )(∑20
j=1 reg j

)2 , (19)

where var(ETTA
j ) is the within-block variance. Using this procedure, the estimated standard error

for the global ETT estimator of 0.103 is 0.027, so the estimated effect of treatment on the treated

is highly statistically significant.30

In sum, using the lower-variance estimator introduced in this section, the intention-to-treat

effect is positive and statistically signficant, while the estimated effect of treatment on the treated

is both very negative and highly significant. Why does this discrepancy occur? Again, treatment

effects are heterogenous across blocks, and large blocks with sizeable ITTs also have low rates of

monitoring and thus large ETTs (in absolute value). Weighting blocks and correcting for crossover

involves adjustments to the data, and choices are involved in the formulation of the correction. As

this example shows, different choices can give very different answers.

29Just as with the ITT, note that the weighting is crucial. The difference between the (correct) weighted global ETT
estimator and the simple average of the block-by-block ETT estimators in Table 6 is dramatic: while the weighted
ETT estimator is -0.103, the simple average of the block-by-block estimators is just -0.007.

30Jackknifing the variance produces a smaller estimated standard error of 0.013; again, however, the jackknife is
likely to be unreliable, due to the small size of the assigned-to-treatment group and the low compliance rate.
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Table 6: Estimated Effects of Treatment on the Treated (ETT), by Block
Block (district) Registered Voters ETT

(increase or decrease in vote share)
1. Kota Banda Aceh 173,265 0.076
2. Kota Surabaya 2,078,486 0.161
3. Kota Mataram 241,483 0.040
4. Sampang 569,216 0.605
5. Tabanan 325,701 0.041
6. Situbondo 488,633 0.180
7. Kota Yogyakarta 327,873 0.132
8. Kota Kediri 200,137 0.067
9. Kota Medan 1,525,526 -0.040
10. Kampar and Kota Pekan Baru 740,924 0.118
11. Kota Samarinda 453,693 0.020
12. Cianjur 1,378,863 -1.517
13. Kota Palangka Raya 123,596 0.275
14. Kota Pontianak 371,780 -0.036
15. Kota Padang 525,422 -0.035
16. Palembang 906,169 -0.037
17. Kota Bitung 120,637 -0.088
18. Kota Ternate 95,771 -0.015
19. Kota Ambon 192,097 -0.186
20. Kota Makassar 812,977 0.095

ETTvote share 11,652,249 -0.103
(s.e.) (0.027)

7 The importance of experimental design

The analysis above demonstrates the sensitivity of different corrections to experimental data to the

models used for adjustment. Using the number of villages to weight estimates across blocks, the

global ITT for the study population gives one answer to the question, ”did (assignment to) elec-

tion monitoring increase or decrease the incumbent’s vote share?” The ETT gives a very different

answer to the question. Both estimators may be sensible, while the common strategy of using

IVLS to estimate a regression equation with block fixed effects plainly is not. Using an alternative

weighting scheme, we can achieve lower-variance ITT and ETT estimators, though at the cost of
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introducing some bias.

Perhaps more than anything else, however, the discussion above suggests the importance of

experimental design. In retrospect, two features of this experiment especially complicate its anal-

ysis. Because these features often seem to arise in applied work, particularly in field experiments,

we discuss them in further detail in this section.

First, recall that the desire to adjust the experimental data to estimate the effect of treatment

on the treated stems from the substantial crossover in this experiment. The ratio of election ob-

servers to the number of villages in the assigned-to-monitoring group, within each block, was very

low, which created substantial “non-compliance” in the assigned-to-monitoring villages, as many

such villages could not be visited by election observers.

An alternative to model-based adjustment is adjustment to the experimental design. In this

context, that might entail reducing the number of blocks, and increasing the number of electoral

teams assigned to each block, in order to boost compliance with the experimental protocol. That

is, the goal is to increase the ratio of villages actually monitored to villages in the assigned-to-

monitoring group. Of course, in this experiment, there may be a natural tradeoff between national

representativeness and the confidence with which we can estimate treatment effects; the latter goal

seems of the utmost importance, however.

A second salient feature of this experiment was that election monitors were allowed to

choose the villages they visited. This may have had at least two possibly undesirable consequences.

First, allowing monitors to choose villages may attenuate treatment effects. Suppose, for instance,

that monitors choose villages that are easiest to reach – and that, perhaps in consequence, are

less likely sites for electoral fraud. While intention-to-treat and other estimators may be unbiased

(monitors would also have chosen easy-to-reach villages in the control group, had control villages

been assigned to monitoring), treatment effects may be smaller due to the fact that monitors are

less likely to interrupt fraud in the easy-to-reach villages where fraud tends not to occur. Second,

allowing observers latitude over the villages they monitor also heightens the possibility that ob-
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servers will monitor control villages, leading to crossover from the treatment to control arm of the

experiment. From a design perspective, it is therefore optimal to limit the discretion that observers

have to choose the villages they monitor.

Of course, these theoretical points about design notwithstanding, there may be substantial

logistical challenges involved in enforcing an experimental protocol. Partner organizations (here,

the Carter Center) must be convinced of the value of sticking to the experimental protocol; together

with researchers, the organization must realistically evaluate the number of units it can treat, so

that the size of the assigned-to-treatment group can be chosen accordingly. Given fixed resources,

there may be a tradeoff between the desire of a partner organization to expand the universe of the

study (for example, by providing election monitors to a reasonably wide variety of districts) and

the ability to estimate causal effects accurately. Enlisting the cooperation of partner organizations

can be challenging but may the most important step, as the consequences of design choices for

inferential leverage are large; these consequences should be borne in mind as analysts design and

attempt to enforce experimental protocols.

8 What is the relevant parameter?

The discussion above also raises a more foundational philosophy-of-inference question: what is

the relevant treatment effect? Is it the intention-to-treat parameter – here, the difference between

the votes the incumbent would have obtained if all villages were assigned to monitoring and the

votes she would have obtained if none were assigned to monitoring? Or is it instead the effect of

treatment on the treated, that is, the effect on compliers?

In some settings, the effect of treatment on the treated may appear the more relevant param-

eter. After all, in many experiments there is substantial crossover, that is, some subjects assigned

to treatment are subjected to the control regime, while some subjects assigned to control instead

receive the treatment. With crossover, intention-to-treat analysis usually gives a conservative esti-
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mate of the effect of treatment.

Yet intention-to-treat analysis may be the most relevant for both social-scientific and espe-

cially policy purposes. Intention-to-treat analysis, in some sense, tells us the effect of what “we”

do, rather than the effect of what “they” do. It tells us, for instance, how much a given deployment

of resources in a given context might be expected to affect the vote share of a political incumbent.

In many settings, the effect of what “we” as social scientists – or as advisors planning an electoral

monitoring mission – may be the most relevant parameter, certainly for policy purposes.

9 Conclusion

Experiments may always be analyzed according to the intention-to-treat principle, in which units

randomly assigned to receive treatment are compared to those randomly assigned to control. Yet

intention-to-treat analysis usually provides a conservative estimate of the effect of treatment, when

compliance with an experimental protocol is low. This may lead analysts to seek to estimate the

effect of treatment on the treated, that is, the effect on units that receive the treatment if assigned

to treatment and otherwise are subjected to the control. Estimating the effect of treatment on the

treated, however, raises issues akin those raised by observational studies, because who receives

treatment – as opposed to who is randomly assigned to treatment – may be influenced by con-

founding factors.

The broad point we make in this article is that adjustments to experimental data involve

choices, and these choices have important consequences for inferences about causal effects. Ex-

perimental design issues can substantially complicate estimation of the effect of treatment on the

treated. Once we move beyond intention-to-treat analysis, which involves the purest experimental

comparison, different models may give very different results.

The experiment discussed in this paper provides a particularly intriguing example, in which

there are large discrepancies between estimators of the intention-to-treat effect and the effect of
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treatment on the treated. These estimators can even have the opposite sign. In addition, both es-

timators give very different results than a common but misleading approach, which is to analyze

experiments with block randomization using instrumental variables least-squares regression and

block “fixed effects.” The discrepancies between estimators arises for several reasons. First, there

was block randomization, and blocks were of unequal sizes; next, treatment effects were heteroge-

nous and related to block size. Finally, the monitoring rate in the treatment group was unequal

across blocks, and this too was related to the size of blocks.

Analysis of this experiment illustrates a variety of other ways in which judgment enters the

adjustment process. For instance, one must choose which weight to use to pool blocks for purposes

of global estimators of treatment effects in the study population. The choice of weights can lead

to estimators with very different properties; there can be tradeoffs between minimizing bias and

variance involved in the choice of estimators.

A preferable alternative to model-based adjustment may be to alter the experimental design,

where possible. For example, issues raised by crossover can be attenuated by efforts to enforce the

experimental protocol. To be sure, ensuring that those assigned to treatment receive the treatment,

while those assigned to control are subjected to the control, is not always feasible. Yet in field

experiments like the one discussed in this paper, sensible design modifications could in principle

substantially limit non-compliance. Here, for instance, one might seek to assign more electoral

teams to each block (resulting perhaps in fewer monitored blocks), so that a greater proportion of

villages in the assigned-to-monitoring group would be actually monitored.

The sensitivity of results to modeling assumptions raises an additional issue. Given the

wide range of possible findings that result from different modeling choices in this application –

in one analysis, monitoring helps Megawati a lot, while in another, monitoring hurts Megawati a

lot – one could conceive of analysts being tempted to report only those analyses that support their

theoretical claims. At the least, even if multiple (and conflicting) results are reported, adjustments

for multiple comparisons may be necessary if reported statistical significance tests are to be in-
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terpretable in standard ways. This point may suggest the value of specifying (and even posting

on a public website, as other scholars have proposed) the hypotheses that are to be tested in any

experiment, as well as the data-analytic procedures that will be used to test them. Otherwise, it is

conceivable that analysis of experimental data could give rise to the kinds of specification searches

that are familiar – but troubling – from modeling on observational data.

Finally, experiments like the one discussed here raise philosophy-of-inference questions.

For instance, what is the most relevant parameter, intention-to-treat or the effect of treatment on

the treated? In some contexts, intention-to-treat may have the greatest social-scientific as well

as policy relevance. After all, given fixed resources, we might like to know what is the causal

effect of what “we” as social scientists or policy advisors do. Beyond relevance, intention-to-treat

analysis is the most robust way of analyzing experiments, since it leverages the purest experimental

comparison.
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